scholarly journals A Novel Method to Prepare Transparent, Flexible and Thermally Conductive Polyethylene/Boron Nitride Films

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 111
Author(s):  
Mingming Yi ◽  
Meng Han ◽  
Junlin Chen ◽  
Zhifeng Hao ◽  
Yuanzhou Chen ◽  
...  

The high thermal conductivity and good insulating properties of boron nitride (BN) make it a promising filler for high-performance polymer-based thermal management materials. An easy way to prepare BN-polymer composites is to directly mix BN particles with polymer matrix. However, a high concentration of fillers usually leads to a huge reduction of mechanical strength and optical transmission. Here, we propose a novel method to prepare polyethylene/boron nitride nanoplates (PE/BNNPs) composites through the combination of electrostatic self-assembly and hot pressing. Through this method, the thermal conductivity of the PE/BNNPs composites reach 0.47 W/mK, which gets a 14.6% improvement compared to pure polyethylene film. Thanks to the tight bonding of polyethylene with BNNPs, the tensile strength of the composite film reaches 1.82 MPa, an increase of 173.58% compared to that of pure polyethylene film (0.66 MPa). The fracture stress was also highly enhanced, with an increase of 148.44% compared to pure polyethylene film. Moreover, the addition of BNNPs in PE does not highly reduce its good transmittance, which is preferred for thermal management in devices like light-emitting diodes. This work gives an insight into the preparation strategy of transparent and flexible thermal management materials with high thermal conductivity.

2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000001-00005
Author(s):  
Ya Liu ◽  
Nan Wang ◽  
Lilei Ye ◽  
Abdelhafid Zehri ◽  
Andreas Nylander ◽  
...  

Abstract Thermally conductive materials with electrically insulating properties have been extensively investigated for thermal management of electronic devices. The combined properties of high thermal conductivity, structural stability, corrosion resistance and electric resistivity make hexagonal boron nitride (h-BN) a promising candidate for this purpose. Theoretical studies have revealed that h-BN has a high in-plane thermal conductivity up to 400 - 800 W m−1 K−1 at room temperature. However, it is still a big challenge to achieve high thermally conductive h-BN thick films that are commercially feasible due to its poor mechanical properties. On the other hand, many polymers exhibit advantages for flexibility. Thus, combining the merits of polymer and the high thermal conductivity of h-BN particles is considered as a promising solution for this issue. In this work, orientated PVP/h-BN films were prepared by electrospinning and a subsequent mechanical pressing process. With the optimized h-BN loading, a PVP/h-BN composite film with up to 22 W m−1 K−1 and 0.485 W m−1 K−1 for in-plane and through-plane thermal conductivity can be achieved, respectively. We believe this work can help accelerate the development of h-BN for thermal management applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


2019 ◽  
Vol 3 (11) ◽  
pp. 2455-2462 ◽  
Author(s):  
Si-Wei Xiong ◽  
Pan Zhang ◽  
Yu Xia ◽  
Pei-Gen Fu ◽  
Jing-Gang Gai

We developed a thermally conductive and antimicrobial QACs@h-BN/LLDPE composites for thermal management of medically electronic devices, it was approximately 100% against both E. coli and S. aureus and its thermal conductivity can reach 1.115 W m−1 K−1.


2019 ◽  
Vol 32 (3) ◽  
pp. 324-333 ◽  
Author(s):  
Ting Fei ◽  
Yanbao Li ◽  
Baocheng Liu ◽  
Chengbo Xia

Polymer-based composites with high thermal conductivity have great potential application as thermal management materials. This study was devoted to improving the thermal conductivity of the flexible thermoplastic polyurethane (TPU) by employing boron nitride (BN) as heat filler. We prepared flexible and thermally conductive TPU/BN composite via solution mixing and hot pressing. The thermal conductivity of the TPU/BN composite with 50 wt% BN (32.6 vol%) reaches 3.06 W/m·K, approximately 1290% enhancement compared to that of pure TPU (0.22 W/m·K). In addition, the thermal conductivity of our flexible TPU/BN composite with 30 wt% BN is almost not varied (a decrease of only 2.5%) after 100 cycles of mechanical bending, which indicates the high stability of heat conduction of our flexible TPU/BN composite under mechanical bending. The maximum tensile strength of the TPU/BN composite with 5 wt% BN is 48.9 MPa, 14% higher than that of pure TPU (43.2 MPa). Our flexible and highly thermally conductive TPU/BN composites show promise for heat dissipation in various applications in the electronics field.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3634
Author(s):  
John M. Hutchinson ◽  
Sasan Moradi

Epoxy resin composites filled with thermally conductive but electrically insulating particles play an important role in the thermal management of modern electronic devices. Although many types of particles are used for this purpose, including oxides, carbides and nitrides, one of the most widely used fillers is boron nitride (BN). In this review we concentrate specifically on epoxy-BN composites for high thermal conductivity applications. First, the cure kinetics of epoxy composites in general, and of epoxy-BN composites in particular, are discussed separately in terms of the effects of the filler particles on cure parameters and the cured composite. Then, several fundamental aspects of epoxy-BN composites are discussed in terms of their effect on thermal conductivity. These aspects include the following: the filler content; the type of epoxy system used for the matrix; the morphology of the filler particles (platelets, agglomerates) and their size and concentration; the use of surface treatments of the filler particles or of coupling agents; and the composite preparation procedures, for example whether or not solvents are used for dispersion of the filler in the matrix. The dependence of thermal conductivity on filler content, obtained from over one hundred reports in the literature, is examined in detail, and an attempt is made to categorise the effects of the variables and to compare the results obtained by different procedures.


2016 ◽  
Vol 4 (38) ◽  
pp. 14595-14604 ◽  
Author(s):  
Bo Zhao ◽  
Li Jiang ◽  
Xiaoliang Zeng ◽  
Kai Zhang ◽  
Matthew M. F. Yuen ◽  
...  

A binder-free flexible graphene–SnO2 film electrode with a high thermal conductivity of 535.3 W m−1 K−1 is developed for lithium ion batteries, which is beneficial for the thermal management of batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (39) ◽  
pp. 33036-33042 ◽  
Author(s):  
Shoji Nagaoka ◽  
Takuma Jodai ◽  
Yoshihiro Kameyama ◽  
Maki Horikawa ◽  
Tomohiro Shirosaki ◽  
...  

Formation of a thermal conductive network in resin sheet hybridized cellulose/BN core–shell microbeads.


Sign in / Sign up

Export Citation Format

Share Document