scholarly journals Nanostructured Zn-Substituted Monetite Based Material Induces Higher Bone Regeneration Than Anorganic Bovine Bone and β-Tricalcium Phosphate in Vertical Augmentation Model in Rabbit Calvaria

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 143
Author(s):  
Lorena Benito-Garzón ◽  
Yasmina Guadilla ◽  
Idoia Díaz-Güemes ◽  
Iván Valdivia-Gandur ◽  
María-Cristina Manzanares ◽  
...  

The capacity of a nanostructured multicomponent material composed of Zn-substituted monetite, amorphous calcium phosphate, hydroxyapatite and silica gel (MSi) to promote vertical bone augmentation was compared with anorganic bovine bone (ABB) and synthetic β-tricalcium phosphate (β-TCP). The relation between biological behavior and physicochemical properties of the materials was also studied. The in vivo study was conducted in a vertical bone augmentation model in rabbit calvaria for 10 weeks. Significant differences in the biological behavior of the materials were observed. MSi showed significantly higher bone regeneration (39%) than ABB and β-TCP (24%). The filled cylinder volume was similar in MSi (92%) and ABB (91%) and significantly lower in β-TCP (81%) implants. In addition, β-TCP showed the highest amount of non-osteointegrated particles (17%). MSi was superior to the control materials because it maintains the volume of the defect almost full, with the highest bone formation, the lowest number of remaining particles, which are almost fully osteointegrated and having the lowest amount of connective tissue. Besides, the bone formed was mature, with broad trabeculae, high vascularization and osteogenic activity. MSi resorbs gradually over time with an evident increment of the porosity and simultaneous colonization for vascularized new bone. In addition, the osteoinductive behavior of MSi material was evidenced.

2012 ◽  
Vol 8 (9) ◽  
pp. 3500-3508 ◽  
Author(s):  
Marco A. Lopez-Heredia ◽  
Matilde Bongio ◽  
Marc Bohner ◽  
Vincent Cuijpers ◽  
Louis A.J.A. Winnubst ◽  
...  

2019 ◽  
Vol 7 (20) ◽  
pp. 3250-3259 ◽  
Author(s):  
Yali Miao ◽  
Yunhua Chen ◽  
Xiao Liu ◽  
Jingjing Diao ◽  
Naru Zhao ◽  
...  

3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.


2021 ◽  
Author(s):  
Mohammad Kamal ◽  
Sara Al-Obaidly ◽  
Bernd Lethaus ◽  
Alexander K. Bartella

Abstract Background: Bone grafting is commonly used for reconstructing skeletal defects in the craniofacial region. Several bone augmentation models were developed to optimize bone regeneration in both vertical and horizontal dimesions. Aim: The aim of this study was to develop a surgical animal model for establishing a three-dimensional (3D) grafting environment in the animal's mandibular ramus for horizontal and vertical bone regeneration using osseous shell technique, as in human patients. Materials and methods: Initial osteological and imaging survey were performed on a postmortem skull of a New Zealand White (NZW) rabbit skull, Oryctolagus cuniculus, for feasibility assessment for performing the surgical procedure. 3D osseus defect was created in the mandibular ramus through a submandibular incision and the osseous shell plates were stabilized with osteosynthesis fixation screws and defect filled with particular bone grafting material. The in-vivo surgical procedures were conducted in four 8-week-old NZW rabbits utilising two osseous shell materials: xenogenic human cortical plates, and autogenous rabbit cortical plates, and the created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone regeneration after 12 weeks using histological and Cone Beam Computed Tomography (CBCT) imaging analysis. Results: Clinical analysis at 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone regeneration. Conclusion: The rabbit model is an efficient and reliable biological method for creating a seizable three-dimensional horizontal and vertical bone regeneration model in the mandibular ramus using osseous shell technique for testing various bone-substitute materials testing without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential, using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 229 ◽  
Author(s):  
Janis Zarins ◽  
Mara Pilmane ◽  
Elga Sidhoma ◽  
Ilze Salma ◽  
Janis Locs

Background: Strontium (Sr) enriched biomaterials have been used to improve bone regeneration in vivo. However, most studies provide only two experimental groups. The aim of our study was to compare eleven different bone sample groups from osteoporotic and healthy rabbits’ femoral neck, as it is the most frequent osteoporotic fracture in humans. Methods: Osteoporotic bone defects were filled with hydroxyapatite 30% (HA) and tricalcium phosphate 70% (TCP), 5% Sr-enriched HA30/TCP70, HA70/TCP30, or Sr-HA70/TCP30 granules and were compared with intact leg, sham surgery and healthy non-operated bone. Expression of osteoprotegerin (OPG), nuclear factor kappa beta 105 (NFkB-105), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP-2/4), collagen I (Col-1α), matrix metalloproteinase 2 (MMP-2), tissue inhibitor of matrix metalloproteinase 2 (TIMP-2), interleukin 1 (IL-1) and interleukin 10 (IL-10) was analyzed by histomorphometry and immunohistochemistry. Results: Our study showed that Sr-HA70/TCP30 induced higher expression of all above-mentioned factors compared to intact leg and even higher expression of OC, MMP-2 and NFkB-105 compared to Sr-HA30/TCP70. HA70/TCP30 induced higher level of NFkB-105 and IL-1 compared to HA30/TCP70. Conclusion: Sr-enriched biomaterials improved bone regeneration at molecular level in severe osteoporosis and induced activity of the factors was higher than after pure ceramic, sham or even healthy rabbits.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 790
Author(s):  
Jong-Ju Ahn ◽  
Ji-Hyun Yoo ◽  
Eun-Bin Bae ◽  
Gyoo-Cheon Kim ◽  
Jae Joon Hwang ◽  
...  

This study was undertaken to compare new bone formation between non-expired and expired bovine-derived xenogeneic bone substitute (expired, out-of-use period) and to evaluate the efficacy of argon (Ar)-based atmospheric pressure plasma (APP) treatment on expired bone substitute in rat calvarial defect. The groups were divided into (1) Non/Expired group (Using regular xenografts), (2) Expired group (Using expired xenografts), and (3) Ar/Expired group (Using Ar-based APP treated expired xenografts). Surface observation and cell experiments were performed in vitro. Twelve rats were used for in vivo experiment and the bony defects were created on the middle of the cranium. The bone substitute of each group was implanted into the defective site. After 4 weeks, all the rats were sacrificed, and the volumetric, histologic, and histometric analyses were performed. In the results of osteogenic differentiation and mineralization, Non/Expired and Ar/Expired groups were significantly higher than Expired group (p < 0.05). However, there was no significant difference between groups in the animal study (p > 0.05). Within the limitations of this study, the surface treatment of Ar-based APP has a potential effect on the surface modification of bone grafts. However, there was no significant difference in bone regeneration ability between groups in vivo; thus, studies on APP to enhance bone regeneration should be carried out in the future.


2016 ◽  
Vol 720 ◽  
pp. 90-94
Author(s):  
Masanobu Kamitakahara ◽  
Takashi Shirato ◽  
Taishi Yokoi ◽  
Hideaki Matsubara ◽  
Yasuaki Shibata ◽  
...  

Silicate-containing alpha-tricalcium phosphate (α-TCP) ceramics are expected to be useful scaffolds for bone regeneration because α-TCP shows high biodegradability and silicate ions are expected to promote the bone formation. We previously revealed that the porous silicate-containing α-TCP granules provided earlier bone formation and showed lower biodegradability than the porous silicate-free α-TCP granules in vivo. In order to reveal the mechanism of the bone formation promoted by silicate incorporation, the proliferation and differentiation of osteoblast-like cells on the silicate-containing and silicate-free α-TCP ceramics were examined in vitro. The silicate incorporation in α-TCP promoted the differentiation of osteoblast-like cells, and it might be one of the factors to promote bone formation In Vivo.


Sign in / Sign up

Export Citation Format

Share Document