scholarly journals Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Manuel Estévez ◽  
Giorgia Montalbano ◽  
Alvaro Gallo-Cordova ◽  
Jesús G. Ovejero ◽  
Isabel Izquierdo-Barba ◽  
...  

Nowadays, there is an ever-increasing interest in the development of systems able to guide and influence cell activities for bone regeneration. In this context, we have explored for the first time the combination of type-I collagen and superparamagnetic iron oxide nanoparticles (SPIONs) to design magnetic and biocompatible electrospun scaffolds. For this purpose, SPIONs with a size of 12 nm were obtained by thermal decomposition and transferred to an aqueous medium via ligand exchange with dimercaptosuccinic acid (DMSA). The SPIONs were subsequently incorporated into type-I collagen solutions to prove the processability of the resulting hybrid formulation by means of electrospinning. The optimized method led to the fabrication of nanostructured scaffolds composed of randomly oriented collagen fibers ranging between 100 and 200 nm, where SPIONs resulted distributed and embedded into the collagen fibers. The SPIONs-containing electrospun structures proved to preserve the magnetic properties of the nanoparticles alone, making these matrices excellent candidates to explore the magnetic stimuli for biomedical applications. Furthermore, the biological assessment of these collagen scaffolds confirmed high viability, adhesion, and proliferation of both pre-osteoblastic MC3T3-E1 cells and human bone marrow-derived mesenchymal stem cells (hBM-MSCs).

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 287 ◽  
Author(s):  
Fadoua Sallem ◽  
Rihab Haji ◽  
Dominique Vervandier-Fasseur ◽  
Thomas Nury ◽  
Lionel Maurizi ◽  
...  

In this work, new nanohybrids based on superparamagnetic iron oxide nanoparticles (SPIONs) were elaborated and discussed for the first time as nanovectors of a derivative molecule of trans-resveratrol (RSV), a natural antioxidant molecule, which can be useful for brain disease treatment. The derivative molecule was chemically synthesized (4’-hydroxy-4-(3-aminopropoxy) trans-stilbene: HAPtS) and then grafted onto SPIONs surface using an organosilane coupling agent, which is 3-chloropropyltriethoxysilane (CPTES) and based on nucleophilic substitution reactions. The amount of HAPtS loaded onto SPIONs surface was estimated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analyses at 116 µmol·g−1 SPIONs. The synthesized HAPtS molecule, as well as the associated nanohybrids, were fully characterized by transmission electron microscopy (TEM), XPS, TGA, infrared (IR) and UV-visible spectroscopies, dynamic light scattering (DLS), and zeta potential measurements. The in vitro biological assessment of the synthesized nanohybrid’s efficiency was carried out on C6 glioma cells and showed that the nanovector SPIONs-CPTES-HAPtS do not affect the mitochondrial metabolism (MTT test), but damage the plasma membrane (FDA test), which could contribute to limiting the proliferation of cancerous cells (clonogenic test) at a HAPtS concentration of 50 µM. These nanoparticles have a potential cytotoxic effect that could be used to eliminate cancer cells.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14203-14212
Author(s):  
Luccas Lossano Name ◽  
Sergio Hiroshi Toma ◽  
Helton Pereira Nogueira ◽  
Luis Humberto Avanzi ◽  
Rafael dos Santos Pereira ◽  
...  

Conversion efficiency as high as 80–100% and 50% selectivity for camphene and limonene was achieved with low production of polymeric byproducts (18–28%), using a new magnetically recyclable catalyst – SPION-Nb30@HPW.


Heliyon ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. e01955 ◽  
Author(s):  
Sharmistha Mohapatra ◽  
Mohammed Asfer ◽  
Mohammed Anwar ◽  
Kalicharan Sharma ◽  
Mymoona Akhter ◽  
...  

Polymer ◽  
2016 ◽  
Vol 106 ◽  
pp. 238-248 ◽  
Author(s):  
Duc Nguyen ◽  
Binh T.T. Pham ◽  
Vien Huynh ◽  
Byung J. Kim ◽  
Nguyen T.H. Pham ◽  
...  

2017 ◽  
Vol 6 (5) ◽  
pp. 449-472 ◽  
Author(s):  
Marina Fontes de Paula Aguiar ◽  
Javier Bustamante Mamani ◽  
Taylla Klei Felix ◽  
Rafael Ferreira dos Reis ◽  
Helio Rodrigues da Silva ◽  
...  

AbstractThe purpose of this study was to review the use of the magnetic targeting technique, characterized by magnetic driving compounds based on superparamagnetic iron oxide nanoparticles (SPIONs), as drug delivery for a specific brain locus in gliomas. We reviewed a process mediated by the application of an external static magnetic field for targeting SPIONs in gliomas. A search of PubMed, Cochrane Library, Scopus, and Web of Science databases identified 228 studies, 23 of which were selected based on inclusion criteria and predetermined exclusion criteria. The articles were analyzed by physicochemical characteristics of SPIONs used, cell types used for tumor induction, characteristics of experimental glioma models, magnetic targeting technical parameters, and analysis method of process efficiency. The study shows the highlights and importance of magnetic targeting to optimize the magnetic targeting process as a therapeutic strategy for gliomas. Regardless of the intensity of the patterned magnetic field, the time of application of the field, and nanoparticle used (commercial or synthesized), all studies showed a vast advantage in the use of magnetic targeting, either alone or in combination with other techniques, for optimized glioma therapy. Therefore, this review elucidates the preclinical and therapeutic applications of magnetic targeting in glioma, an innovative nanobiotechnological method.


Sign in / Sign up

Export Citation Format

Share Document