scholarly journals Effect of Defects on the Mechanical and Thermal Properties of Graphene

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 347 ◽  
Author(s):  
Maoyuan Li ◽  
Tianzhengxiong Deng ◽  
Bing Zheng ◽  
Yun Zhang ◽  
Yonggui Liao ◽  
...  

In this study, the mechanical and thermal properties of graphene were systematically investigated using molecular dynamic simulations. The effects of temperature, strain rate and defect on the mechanical properties, including Young’s modulus, fracture strength and fracture strain, were studied. The results indicate that the Young’s modulus, fracture strength and fracture strain of graphene decreased with the increase of temperature, while the fracture strength of graphene along the zigzag direction was more sensitive to the strain rate than that along armchair direction by calculating the strain rate sensitive index. The mechanical properties were significantly reduced with the existence of defect, which was due to more cracks and local stress concentration points. Besides, the thermal conductivity of graphene followed a power law of λ~L0.28, and decreased monotonously with the increase of defect concentration. Compared with the pristine graphene, the thermal conductivity of defective graphene showed a low temperature-dependent behavior since the phonon scattering caused by defect dominated the thermal properties. In addition, the corresponding underlying mechanisms were analyzed by the stress distribution, fracture structure during the deformation and phonon vibration power spectrum.

2015 ◽  
Vol 1120-1121 ◽  
pp. 73-84
Author(s):  
Lei Jin ◽  
Pei Zhong Li ◽  
Guo Dong Zhou ◽  
Wei Gao ◽  
Jiang Ning Ma ◽  
...  

The effect of impurity Ce on the mechanical and thermal properties of tetragonal ZrO2 stabilized by rare earth element Y (YSZ) have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. The predicted elastic constants indicate that YSZ and Ce doped YSZ (CeYSZ) are mechanically stable structures. And then the numerical estimates of bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, sound velocity and minimum thermal conductivity were performed using the calculated elastic constants and analyzed for the first time. The values of sound velocity from different orientations are also reported. The agreement between the results of the available experiments and our calculations was satisfactory. Our calculated results indicate that Young’s modulus, hardness, mean sound velocity and minimum thermal conductivity of YSZ can be decreased by Ce substitution. The reasons are from the “softened” Ce-O bond strength using bond population and relative volume change under external hydrostatic pressure. Chemical bonding nature was also analyzed from the density of states and electron density difference.


2018 ◽  
Vol 789 ◽  
pp. 221-225
Author(s):  
Nattapol Dedruktip ◽  
Wasan Leelawanachai ◽  
Nuchnapa Tangboriboon

Alumina fiber is a ceramic material used as a dispersed phase or filler to reinforce the mechanical and improve thermal properties of natural rubber via vulcanization process at curing temperature 150°C. The amount of alumina fiber added in natural rubber was varied from 0 to 50 phr on 100 phr of natural rubber in a sulfur curing system. Adding 10 phr alumina fiber affects to obtain the best natural rubber composite samples having good mechanical and thermal properties. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of adding 10 phr whisker alumina fiber encoded NR-Al-10 are equal to 14.38±1.95 MPa, 1038.4±41.45%, 545.63±25.67 MPa and 0.2376±0.0003 W/m.K, respectively, better than those of pure natural rubber compounds without adding alumina fiber. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of natural rubber without adding alumina fiber are equal to 14.06±6.03 MPa, 949.41±52.15%, 496.32±8.54 MPa and 0.2500±0.0003 W/m.K, respectively.


2021 ◽  
Vol 1032 ◽  
pp. 67-72
Author(s):  
Xiao Fei Ma ◽  
Xue Mei Sun ◽  
Rui Wang ◽  
Shuai Li

In this study, the effects of 555-777 defect on Young’s modulus, fracture strength and fracture strain of armchair graphene nanoribbons (AGNRs) and zigzag graphene nanoribbons (ZGNRs) were investigated by using Molecular Dynamics simulations under uniaxial tension. The simulation results show that 555-777 defect significantly reduces the fracture strength and fracture strain of AGNRs and ZGNRs, but has little effect on Young's modulus. The influence of 555-777 defect on the mechanical properties of AGNRs is greater than that of ZGNRs. This study provides a better understanding of mechanical properties of graphene nanoribbons.


2015 ◽  
Vol 1120-1121 ◽  
pp. 85-93 ◽  
Author(s):  
Lei Jin ◽  
Pei Zhong Li ◽  
Chun Zhu Jiang ◽  
Guo Dong Zhou ◽  
Hai Bin Zhou ◽  
...  

In order to achieve better understanding of the effect of dopant (Sc, Y, Yb, Hf and Ce) on elastic stiffness and thermal properties of La2Zr2O7. The related calculations were performed using the first principles methods. The predicted elastic constants indicate that La2Zr2O7 and oxidations-La2Zr2O7 (oxidations refer to Sc2O3, Y2O3, Yb2O3, HfO2 and CeO2) are mechanically stable structures. And then the numerical estimates of bulk modulus, shear modulus, Young’s modulus were performed using the calculated elastic constants. After these mechanical properties are obtained, sound velocity, Debye temperature and theoretical minimum thermal conductivity of La2Zr2O7 and oxidations-La2Zr2O7 are calculated and analyzed in detail. The available experimental results and our calculations are basically satisfactory. The calculated results indicate that Young’s modulus, mean sound velocity, Debye temperature and minimum thermal conductivity of La2Zr2O7 can be decreased by dopants. CeO2 has extraordinary ability to decrease thermal conductivity in these dopant oxidations.


2018 ◽  
Vol 53 (6) ◽  
pp. 835-847 ◽  
Author(s):  
Tai-Yuan Wang ◽  
Po-Ying Tseng ◽  
Jia-Lin Tsai

Atomistic simulation together with micromechanical analysis was employed to characterize the Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. Nanocomposites containing pristine graphene, carboxyl (COOH)-functionalized graphene, and COOH- and amine (NH2)-functionalized graphene were considered in the simulations. The effect of atomistic interaction between the graphene and the surrounding epoxy was accounted for in the molecular dynamics simulations and then used to derive the effective properties of graphene. Subsequently, the Young’s modulus and thermal conductivity of nanocomposites containing randomly oriented graphene were modeled using the Mori–Tanaka micromechanical model. The results indicated that the COOH- and NH2-functionalized graphene nanocomposite had superior mechanical and thermal properties to the other two material systems. Moreover, the model predictions were in favorable agreement with the experimental data.


2006 ◽  
Vol 317-318 ◽  
pp. 305-308 ◽  
Author(s):  
Rak Joo Sung ◽  
Takafumi Kusunose ◽  
Tadachika Nakayama ◽  
Yoon Ho Kim ◽  
Tohru Sekino ◽  
...  

A novel transparent polycrystalline silicon nitride was fabricated by hot-press sintering with MgO and AlN as additives. The mixed powder with 3 wt.% MgO and 9 wt.% AlN was sintered at 1900oC for 1 hour under 30 MPa pressure in a nitrogen gas atmosphere. Transparent polycrystalline silicon nitride was successfully fabricated. The mechanical properties such as density, hardness, young’s modulus, fracture strength and fracture toughness were evaluated. The effect of α/β phase on the mechanical properties of transparent polycrystalline silicon nitride was investigated. The properties were changed depending on the amount of α/β phase. The hardness and Young's modulus increased with increasing the volume fraction of α-phase fraction as a reflection of the higher hardness of α-phase Si3N4. The fracture toughness and fracture strength decreased with decreasing the volume fraction of β-phase Si3N4.


2018 ◽  
Vol 14 (4) ◽  
pp. 16-23
Author(s):  
Haydar Abed Dahad ◽  
Sameh Fareed Hasan ◽  
Ali Hussein Alwan

Mechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight ratio was 5%, the maximum Young’s modulus, yield stress and ultimate tensile stress occurred in the polyester with date seeds. The results of tensile and flexural tests showed that the natural composite material has a higher strength than the industrial material. While the results of flexural tests manifested that the maximum improvement in the flexural strength is obtained for orange peels at 5 wt. %, where the maximum increasing percentage is 153.4% than pure polyester. The thermal conductivity of orange peels decreased to the half value when the weight ratio increased from 10% to 15%. The thermal conductivity for polyester with orange peels was greater than the thermal conductivity of polyester with date seeds with maximum percentage occurred at weight ratio 10% is 14.4%, but the thermal conductivity of the industrial composite material was higher than the natural composite material. Finally, the date seeds composite was a good insulator and it had a reduced heat transfer rate in comparison to the rest of the samples, also the maximum variation of temperature with time occurred in date seeds composite.


2021 ◽  
Author(s):  
Samin Eftekhari

The main goal of this research is to introduce novel series of biodegradable nanocomposites that closely mimic the characteristics of real bone such as mechanical and thermal properties. These nanocomposites are composed of cotton-sourced cellulose microcrystals (MCC), hydroxyapatite nanoparticles (HA) and Poly L-Lactic Acid (PLLA). A novel fabrication route is used to manufacture MA and MH series of nanocomposites. MA series was developed to find an optimum range for weight fraction of each constituent required for design of the MH series. Evaluation of the thermal properties of MA series showed that increasing of weight ratio of MCC and HA from 0 to 21 Wt% increased the crystallinity up to 38%. Compression test results of them revealed that increasing the weight fraction of MCC or HA from 0 to 21Wt% enhanced the compressive yield stress from 0.127 to 2.2 MPa and the Young’s modulus from 6.6 to 38 MPa. The cytotoxicity assay results showed there was no sign of toxic material affecting on viability of cells. The MH series was designed and fabricated by selecting a narrower range of weight fraction of the constituents. A design of experiments was used to alter the composition of the constituents to assess their contributions and their effect onto the mechanical properties and biodegradation behaviour of the MH series of the nanocomposites. The weight ratio of MCC to HA, the concentration of PLLA, and the porogen content were chosen as varying factors. A model that accurately predicts the optimum parameter setting was created. Analysis of variance statistical analysis showed that the ratio of MCC to HA was the most influential factor affecting the compressive yield and the mass loss, while the porogen content was the most detrimental factor affecting the Young’s modulus of MH series of nanocomposites had no significant effect on their rate of the mass loss. The nanocomposites with highest weight ratio 4 of MCC to HA, showed maximum mechanical strength and the lowest water absorption and the lowest mass loss. It was found two series of nanocomposites was comparable to trabecular bone from a compositional, structural, thermal, mechanical point of view.


2020 ◽  
Vol 1010 ◽  
pp. 148-153
Author(s):  
Khairul Amali Hamzah ◽  
Yeoh Cheow Keat ◽  
Mazlee Mohd Noor ◽  
Teh Pei Leng ◽  
Shulizawat Aqzna Sazali ◽  
...  

The aim of this study is the development of the ABS-CuZnFe2O4 composites using 3D printer. In this study, the effect of filler loading on the mechanical properties and thermal conductivity is examined. The result shows that at highest filler loading (14 wt%) the tensile strength was improved approximately 98 % while the Young’s modulus increased about 23 % compared to unfilled specimen. Meanwhile, the percentage of elongation decrease approximately about 49 % when filled with 14 wt% of filler. The CuZnFe2O4 filler shows a greater effect on hardness value of the composites around 498 % at maximum filler content. The thermal conductivity of the ABS increased up to 60 % at full capacity of filler.


Nanoscale ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 22-49 ◽  
Author(s):  
Rajesh Kumar ◽  
Avinash Parashar

Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5–6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science.


Sign in / Sign up

Export Citation Format

Share Document