Characterization of Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites

2018 ◽  
Vol 53 (6) ◽  
pp. 835-847 ◽  
Author(s):  
Tai-Yuan Wang ◽  
Po-Ying Tseng ◽  
Jia-Lin Tsai

Atomistic simulation together with micromechanical analysis was employed to characterize the Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. Nanocomposites containing pristine graphene, carboxyl (COOH)-functionalized graphene, and COOH- and amine (NH2)-functionalized graphene were considered in the simulations. The effect of atomistic interaction between the graphene and the surrounding epoxy was accounted for in the molecular dynamics simulations and then used to derive the effective properties of graphene. Subsequently, the Young’s modulus and thermal conductivity of nanocomposites containing randomly oriented graphene were modeled using the Mori–Tanaka micromechanical model. The results indicated that the COOH- and NH2-functionalized graphene nanocomposite had superior mechanical and thermal properties to the other two material systems. Moreover, the model predictions were in favorable agreement with the experimental data.

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 347 ◽  
Author(s):  
Maoyuan Li ◽  
Tianzhengxiong Deng ◽  
Bing Zheng ◽  
Yun Zhang ◽  
Yonggui Liao ◽  
...  

In this study, the mechanical and thermal properties of graphene were systematically investigated using molecular dynamic simulations. The effects of temperature, strain rate and defect on the mechanical properties, including Young’s modulus, fracture strength and fracture strain, were studied. The results indicate that the Young’s modulus, fracture strength and fracture strain of graphene decreased with the increase of temperature, while the fracture strength of graphene along the zigzag direction was more sensitive to the strain rate than that along armchair direction by calculating the strain rate sensitive index. The mechanical properties were significantly reduced with the existence of defect, which was due to more cracks and local stress concentration points. Besides, the thermal conductivity of graphene followed a power law of λ~L0.28, and decreased monotonously with the increase of defect concentration. Compared with the pristine graphene, the thermal conductivity of defective graphene showed a low temperature-dependent behavior since the phonon scattering caused by defect dominated the thermal properties. In addition, the corresponding underlying mechanisms were analyzed by the stress distribution, fracture structure during the deformation and phonon vibration power spectrum.


2015 ◽  
Vol 1120-1121 ◽  
pp. 73-84
Author(s):  
Lei Jin ◽  
Pei Zhong Li ◽  
Guo Dong Zhou ◽  
Wei Gao ◽  
Jiang Ning Ma ◽  
...  

The effect of impurity Ce on the mechanical and thermal properties of tetragonal ZrO2 stabilized by rare earth element Y (YSZ) have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. The predicted elastic constants indicate that YSZ and Ce doped YSZ (CeYSZ) are mechanically stable structures. And then the numerical estimates of bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, sound velocity and minimum thermal conductivity were performed using the calculated elastic constants and analyzed for the first time. The values of sound velocity from different orientations are also reported. The agreement between the results of the available experiments and our calculations was satisfactory. Our calculated results indicate that Young’s modulus, hardness, mean sound velocity and minimum thermal conductivity of YSZ can be decreased by Ce substitution. The reasons are from the “softened” Ce-O bond strength using bond population and relative volume change under external hydrostatic pressure. Chemical bonding nature was also analyzed from the density of states and electron density difference.


2018 ◽  
Vol 789 ◽  
pp. 221-225
Author(s):  
Nattapol Dedruktip ◽  
Wasan Leelawanachai ◽  
Nuchnapa Tangboriboon

Alumina fiber is a ceramic material used as a dispersed phase or filler to reinforce the mechanical and improve thermal properties of natural rubber via vulcanization process at curing temperature 150°C. The amount of alumina fiber added in natural rubber was varied from 0 to 50 phr on 100 phr of natural rubber in a sulfur curing system. Adding 10 phr alumina fiber affects to obtain the best natural rubber composite samples having good mechanical and thermal properties. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of adding 10 phr whisker alumina fiber encoded NR-Al-10 are equal to 14.38±1.95 MPa, 1038.4±41.45%, 545.63±25.67 MPa and 0.2376±0.0003 W/m.K, respectively, better than those of pure natural rubber compounds without adding alumina fiber. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of natural rubber without adding alumina fiber are equal to 14.06±6.03 MPa, 949.41±52.15%, 496.32±8.54 MPa and 0.2500±0.0003 W/m.K, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2831
Author(s):  
Naresh Kakur ◽  
Kamran A. Khan ◽  
Rehan Umer

Thermomechanical modeling of epoxy/graphene oxide under quasi-static and dynamic loading requires thermo-mechanical properties such as Young’s modulus, Poisson’s ratio, thermal conductivity, and frequency-temperature dependent viscoelastic properties. In this study, the effects of different graphene oxide (GO) concentrations (0.05, 0.1, and 0.2 wt%) within an epoxy matrix on several mechanical and thermal properties were investigated. The distribution of GO fillers in the epoxy was investigated using transmission electron microscopy (TEM). The digital image correlation (DIC) technique was employed during the tensile testing to determine Young’s modulus and Poisson’s ratio. Analytical models were used to predict Young’s modulus and thermal conductivity, with an error of less than 13% and 9%, respectively. Frequency–temperature dependent phenomenological models were proposed to predict the storage moduli and loss tangent, with a reasonable agreement with experimental data. A relatively high storage modulus, heat-resistance index (THRI), and thermal conductivity were observed in 0.2 wt% nanocomposite samples compared with pure epoxy and other lower concentration GO nanocomposites. A high THRI and derivative of thermogravimetric analysis peak temperatures (Tm1 and Tm2) were exhibited by adding nano-fillers in the epoxy, which confirms higher thermal stability of nanocomposites than that of pristine epoxy.


2015 ◽  
Vol 1120-1121 ◽  
pp. 85-93 ◽  
Author(s):  
Lei Jin ◽  
Pei Zhong Li ◽  
Chun Zhu Jiang ◽  
Guo Dong Zhou ◽  
Hai Bin Zhou ◽  
...  

In order to achieve better understanding of the effect of dopant (Sc, Y, Yb, Hf and Ce) on elastic stiffness and thermal properties of La2Zr2O7. The related calculations were performed using the first principles methods. The predicted elastic constants indicate that La2Zr2O7 and oxidations-La2Zr2O7 (oxidations refer to Sc2O3, Y2O3, Yb2O3, HfO2 and CeO2) are mechanically stable structures. And then the numerical estimates of bulk modulus, shear modulus, Young’s modulus were performed using the calculated elastic constants. After these mechanical properties are obtained, sound velocity, Debye temperature and theoretical minimum thermal conductivity of La2Zr2O7 and oxidations-La2Zr2O7 are calculated and analyzed in detail. The available experimental results and our calculations are basically satisfactory. The calculated results indicate that Young’s modulus, mean sound velocity, Debye temperature and minimum thermal conductivity of La2Zr2O7 can be decreased by dopants. CeO2 has extraordinary ability to decrease thermal conductivity in these dopant oxidations.


Author(s):  
He Ren ◽  
Eunice Cunha ◽  
Zheling Li ◽  
Lei Wang ◽  
Ian A. Kinloch ◽  
...  

AbstractSilane-functionalized graphene nanoplatelets (GNPs) were prepared using a newly developed approach based upon a simple two-step strategy. The effect of their dispersion and interfacial bonding on the mechanical properties and thermal conductivity of reinforced silicone rubber (SR) was investigated. It was found by Raman mapping that the silane-functionalized GNPs could be dispersed uniformly into the SR matrix, leading to an increase of up to 25% in Young’s modulus at only 2 parts per hundred rubber (phr) loading and a considerable enhancement of up to 150% in the thermal conductivity at 5-phr loading. Both the Young’s modulus and thermal conductivity experimental results were found to be in agreement with the values predicted using theoretical models. Graphical abstract


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Jiho You ◽  
Jinmo Lee ◽  
Seungpyo Hong ◽  
Donghyun You

A computational methodology, which combines a computational fluid dynamics (CFD) technique and a computational structural dynamics (CSD) technique, is employed to design a deformable foil whose kinematics is inspired by the propulsive motion of the fin or the tail of a fish or a cetacean. The unsteady incompressible Navier–Stokes equations are solved using a second-order accurate finite difference method and an immersed-boundary method to effectively impose boundary conditions on complex moving boundaries. A finite element-based structural dynamics solver is employed to compute the deformation of the foil due to interaction with fluid. The integrated CFD–CSD simulation capability is coupled with a surrogate management framework (SMF) for nongradient-based multivariable optimization in order to optimize flapping kinematics and flexibility of the foil. The flapping kinematics is manipulated for a rigid nondeforming foil through the pitching amplitude and the phase angle between heaving and pitching motions. The flexibility is additionally controlled for a flexible deforming foil through the selection of material with a range of Young's modulus. A parametric analysis with respect to pitching amplitude, phase angle, and Young's modulus on propulsion efficiency is presented at Reynolds number of 1100 for the NACA 0012 airfoil.


2017 ◽  
Vol 6 (3) ◽  
pp. 37
Author(s):  
Yoshiharu Mae

The abundance of elements in the universe was plotted on the TC-YM diagram. The most abundant elements show the unique pattern drawing a quadrant. Next, the neutron multiple number, the number of neutron per proton in the nucleus, was introduced. The neutron multiple numbers of elements show the same pattern as the abundance of elements on the diagram. As a result, the abundance of elements shows a good correlation with neutron multiple numbers of elements. With increasing neutron multiple number, the abundance decreases. Besides, the neutron multiple number relates to the materials properties such as the Young’s modulus, thermal conductivity and melting temperature of elements.


Sign in / Sign up

Export Citation Format

Share Document