scholarly journals Highly Optimized Nitrogen-Doped MWCNTs through In-Depth Parametric Study Using Design of Experiments

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 643 ◽  
Author(s):  
Alexander Plunkett ◽  
Katharina Kröning ◽  
Bodo Fiedler

The in-situ nitrogen doping of multiwalled carbon nanotubes via chemical vapor deposition is investigated employing design of experiments (DoE). The establishment of empirical DoE models allowed for the prediction of product features as a function of process conditions in order to systematically synthesize tailor-made nitrogen-doped carbon nanotubes. The high informative content of this approach revealed effects of individual parameters and their interaction with each other. Hence, new valuable insights into the effect of temperature, injection rate, and carrier gas flow on the doping level were obtained which give motivation to approach further theoretical studies on the doping mechanism. Ultimately, competitive nitrogen-doped carbon nanotube features were optimized and yielded promising combinations of achieved doping level, graphitization, and aspect ratios in comparison to present literature values.

Carbon ◽  
2014 ◽  
Vol 68 ◽  
pp. 369-379 ◽  
Author(s):  
Kambiz Chizari ◽  
Alexander Vena ◽  
Lars Laurentius ◽  
Uttandaraman Sundararaj

2006 ◽  
Vol 14 (2-3) ◽  
pp. 151-164 ◽  
Author(s):  
A. V. Okotrub ◽  
L. G. Bulusheva ◽  
V. V. Belavin ◽  
A. G. Kudashov ◽  
A. V. Gusel'nikov ◽  
...  

Carbon ◽  
2013 ◽  
Vol 61 ◽  
pp. 647-649 ◽  
Author(s):  
Qingze Jiao ◽  
Liang Hao ◽  
Qingyan Shao ◽  
Yun Zhao

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1018
Author(s):  
Vadahanambi Sridhar ◽  
Inwon Lee ◽  
Hyun Park

Metal organic framework (MOF)-derived carbon nanostructures (MDC) synthesized by either calcinations or carbonization or pyrolysis are emerging as attractive materials for a wide range of applications like batteries, super-capacitors, sensors, water treatment, etc. But the process of transformation of MOFs into MDCs is time-consuming, with reactions requiring inert atmospheres and reaction time typically running into hours. In this manuscript, we report the transformation of 1,4-diazabicyclo[2.2.2]octane, (DABCO)-based MOFs into iron nitride nanoparticles embedded in nitrogen-doped carbon nanotubes by simple, fast and facile microwave pyrolysis. By using graphene oxide and carbon fiber as microwave susceptible surfaces, three-dimensional nitrogen-doped carbon nanotubes vertically grown on reduced graphene oxide (MDNCNT@rGO) and carbon fibers (MDCNT@CF), respectively, were obtained, whose utility as anode material in sodium-ion batteries (MDNCNT@rGO) and for EMI (electromagnetic interference) shielding material (MDCNT@CF) is reported.


2011 ◽  
Vol 47 (2) ◽  
pp. 668-670 ◽  
Author(s):  
Jing Zhang ◽  
Jianping Lei ◽  
Rong Pan ◽  
Chuan Leng ◽  
Zheng Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document