scholarly journals Measuring Device and Material ZT in a Thin-Film Si-Based Thermoelectric Microgenerator

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 653 ◽  
Author(s):  
Pablo Ferrando-Villalba ◽  
Antonio Pablo Pérez-Marín ◽  
Llibertat Abad ◽  
Gustavo Gonçalves Dalkiranis ◽  
Aitor F. Lopeandia ◽  
...  

Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. Here, we presented the thermoelectric characterization at different temperatures (from 50 to 350 K) of the Si thin-film based on Phosphorous (n) and Boron (p) doped thermocouples that conform to a planar micro TEG. The thermocouples were defined through selective doping by ion implantation, using boron and phosphorous, on a 100 nm thin Si film. The thermal conductivity, the Seebeck coefficient, and the electrical resistivity of each Si thermocouple was experimentally determined using the in-built heater/sensor probes and the resulting values were refined with the aid of finite element modeling (FEM). The results showed a thermoelectric figure of merit for the Si thin films of z T = 0.0093, at room temperature, which was about 12% higher than the bulk Si. In addition, we tested the thermoelectric performance of the TEG by measuring its own figure of merit, yielding a result of ZT = 0.0046 at room temperature.

2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Adul Harnwunggmoung ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractCoSb3 is known as a skutterudite compound that could exhibit high thermoelectric figure of merit. However, the thermal conductivity of CoSb3 is relatively high. In order to enhance the thermoelectric performance of this compound, we tried to reduce the thermal conductivity of CoSb3 by substitution of Rh for Co and by Tl-filling into the voids. The polycrystalline samples of (Co,Rh)Sb3 and Tl-filled CoSb3 were prepared and the thermoelectric properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity were measured in the temperature range from room temperature to 750 K. The Rh substitution for Co reduced the lattice thermal conductivity, due to the alloy scattering effect. The minimum value of the lattice thermal conductivity was 4 Wm-1K-1 at 750 K obtained for (Co0.7Rh0.3)Sb3. Also the lattice thermal conductivity rapidly decreased with increasing the Tl-filling ratio. T10.25Co4Sb12 exhibited the best ZT values; the maximum ZT was 0.9 obtained at 600 K.


2013 ◽  
Vol 665 ◽  
pp. 179-181 ◽  
Author(s):  
Anup V. Sanchela ◽  
Varun Kushwaha ◽  
Ajay. D. Thakur ◽  
C.V. Tomy

FeSb2 was recently found to be a narrow-gap semiconductor with strong electronelectron correlation and a large thermopower at low temperatures. We report measurements of the electrical resistivity, Seebeck coefficient and thermal conductivity between 5 K to 300 K on polycrystalline samples of FeSb2 and FeSb1.9. We found that the deficiency of Sb in the parent compound leads to a giant anomalous peak in thermopower (S) at low temperatures, reaching ~ 426 μV/K at 20 K, resulting in a high thermoelectric power factor at low temperatures, achieving 10 μW/K2m at 27 K.. Consequently, a significantly enhanced thermoelectric figure of merit ZT ~ 0.0015 is achieved near room temperature. At low temperatures there is no improvement in ZT values due to the high thermal conductivity (phonon dominant region). Keywords: Seebeck coefficient, thermal conductivity, resistivity, thermoelectric figure of merit. PACS: 72.20.Pa, 71.27.+a, 71.28.+d


1967 ◽  
Vol 45 (11) ◽  
pp. 3611-3626 ◽  
Author(s):  
C. H. Champness ◽  
W. B. Muir ◽  
P. T. Chiang

Room temperature measurements of the Seebeck coefficient (α), electrical conductivity (σ), thermal conductivity (κ), and thermoelectric figure of merit (Z) were made on samples of n-type Bi2Te3–Bi2Se3 pseudobinary alloys over the whole composition range. To obtain maximum Z, doping was carried out at each composition by the addition of CuBr (donor) from 0 to 66 mole% Bi2Se3 and by lead and excess Se (acceptors) thereafter. Experimentally determined values of the materials parameter β were found to saturate (β∞) at high conductivity in a given alloy and close relationship was found between β∞ and Zmax The optimized values of σ, κ, and CuBr-dopant concentration were found to show a maximum at 33 mole% Bi2Se3, while the optimized value of α showed a minimum at this composition. These results, together with the fact that no maximum was observed in σ at constant α (i.e., constant carrier concentration), suggest that a maximum in the carrier concentration occurs in optimized material at this composition. Further support for this was provided by the observed variation of σ with α at a given composition which was found to be more consistent with a minimum in the apparent energy gap near 33% Bi2Se3 rather than the maximum reported by other workers.


2000 ◽  
Vol 626 ◽  
Author(s):  
R. T. Littleton ◽  
Terry M. Tritt ◽  
B. Zawilski ◽  
J. W. Kolis ◽  
D. R. Ketchum ◽  
...  

ABSTRACTThe thermoelectric figure of merit, ZT = α2σT/λ, has been measured for pentatelluride single crystals of HfTe5, ZrTe5, as well as Se substituted pentatellurides. The parent materials, HfTe5 and ZrTe5, exhibit relatively large p- and n- type thermopower, |a| > 125 μV/K, and low resistivity, ρ ≤ 1 mΩ•cm. These values lead to a large power factor (α2σT) which is substantially increased with proper Se substitution on the Te sites. The thermal conductivity of these needle-like crystals has also been measured as a function of temperature from 10 K ≤ T ≤ 300 K. The room temperature figure of merit for these materials varies from ZT “0.1 for the parent materials to ZT ≈ 0.25 for Se substituted samples. These results as well as experimental procedures will be presented and discussed.


2012 ◽  
Vol 621 ◽  
pp. 167-171
Author(s):  
Tao Hua Liang ◽  
Shi Qing Yang ◽  
Zhi Chen ◽  
Qing Xue Yang

p-type Bi0.5Sb1.5Te3+xTe thermoelectric crystals with various percentages of Te (x = 0.00 wt.%–3.00 wt.%) excess were prepared by the gradient freeze method. By doping with different Te contents, anti-site defects, Te vacancies and hole carrier concentrations were controlled. The Seebeck coefficient, resistivity, thermal conductivity, carrier concentration, and mobility were measured. The relationships between the Te content and thermoelectric properties were investigated in detail. The results suggested that the thermoelectric figure of merit ZT of the Bi0.5Sb1.5Te3+0.09wt.% crystals was 1.36 near room temperature, the optimum carrier concentration was 1.25 × 1019 cm-3, and the mobility was 1480 cm2 V-1 S-1, respectively.


2003 ◽  
Vol 793 ◽  
Author(s):  
T. Harris ◽  
H. Lee ◽  
D. Z. Wang ◽  
J. Y. Huang ◽  
Z. F. Ren ◽  
...  

ABSTRACTHigh figure of merit has been reported in superlattice structures in recent years mainly due to a large reduction in thermal conductivity, while maintaining or even enhancing the power factor. These findings suggest the possibility of using nanocomposites to reduce a material's thermal conductivity and thereby increasing the thermoelectric figure of merit. The current work reports on the thermal conductivity of various Si-Ge nanocomposites synthesized in a simple and straightforward process that allows one to exploit nanoscale physics while rapidly producing macroscale devices. Composite synthesis consisted of combining Si nanoparticles approximately 70 nm in diameter with micron-sized Ge particles in various atomic ratios via hotpressing to form macroscale samples. Room-temperature thermal conductivity was measured for each of the nanocomposite samples and compared with the values of SiGe bulk alloys. In this preliminary work, we observed a significant reduction in bulk thermal conductivity in such materials.


Author(s):  
V.V. Tsygoda ◽  
V.Ya. Petrovskiy

The possibility of reducing the thermal conductivity of silicon nitride as a basis of high-temperature electrical converters was investigated in the thesis. Also, the values of thermoelectric figure of merit and efficiency of thermoelectric current generator for the case of refractory oxygen-free composites were simulated. During the study, the dependence between the m coefficient, which determines the maximum possible efficiency of the thermoelectric generator and the ZT thermoelectric figure of merit, was determined. It was shown that the coefficient of thermal conductivity of the studied materials ranges from 1,2 to 4·106 m2/s and is characterized by a negative temperature coefficient over the entire temperature range. It was found that the thermal conductivity of Si3N4-based materials varies from 2,1 to 5,1 W/(m·K) depending on the type of sintering activator. The use of Al2O3 as an activator makes it possible to obtain a 25% lower thermal conductivity value comparing to materials with the addition of MgO. For the first time, it was proved that currently it is not possible to achieve an efficiency of 0,5hT in Si3N4-based materials used as a composite basis for high-temperature thermoelectric generators development.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


Sign in / Sign up

Export Citation Format

Share Document