scholarly journals Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1047 ◽  
Author(s):  
Marie Krečmarová ◽  
Daniel Andres-Penares ◽  
Ladislav Fekete ◽  
Petr Ashcheulov ◽  
Alejandro Molina-Sánchez ◽  
...  

The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of hBN monolayers in the few-layer thickness range. We also used bandpass filters (500–650 nm) to improve the effectiveness of the optical contrast methods for thickness estimations. We also investigated the thickness dependence of the high frequency in-plane E2g phonon mode of atomically thin hBN on SiO2/Si substrates by micro-Raman spectroscopy, which exhibits a weak thickness-dependence attributable to the in-plane vibration character of this mode. Ab initio calculations of the Raman active phonon modes of atomically thin free-standing crystals support these results, even if the substrate can reduce the frequency shift of the E2g phonon mode by reducing the hBN thickness. Therefore, the optical contrast method arises as the most suitable and fast technique to estimate the thickness of hBN nanosheets.

Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 13913-13923 ◽  
Author(s):  
Jin-Wu Jiang ◽  
Bing-Shen Wang ◽  
Harold S. Park

We perform both lattice dynamics analysis and molecular dynamics simulations to demonstrate the existence of topologically protected phonon modes in two-dimensional, monolayer hexagonal boron nitride and silicon carbide sheets.


2017 ◽  
Vol 57 (2S2) ◽  
pp. 02CB04
Author(s):  
Md. Sherajul Islam ◽  
Khalid N. Anindya ◽  
Ashraful G. Bhuiyan ◽  
Satoru Tanaka ◽  
Takayuki Makino ◽  
...  

Nano Research ◽  
2014 ◽  
Vol 8 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
André Dankert ◽  
M. Venkata Kamalakar ◽  
Abdul Wajid ◽  
R. S. Patel ◽  
Saroj P. Dash

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Manavendra P. Singh ◽  
Manab Mandal ◽  
K. Sethupathi ◽  
M. S. Ramachandra Rao ◽  
Pramoda K. Nayak

AbstractDiscovery of two-dimensional (2D) topological insulators (TIs) demonstrates tremendous potential in the field of thermoelectric since the last decade. Here, we have synthesized 2D TI, Sb2Te3 of various thicknesses in the range 65–400 nm using mechanical exfoliation and studied temperature coefficient in the range 100–300 K using micro-Raman spectroscopy. The temperature dependence of the peak position and line width of phonon modes have been analyzed to determine the temperature coefficient, which is found to be in the order of 10–2 cm−1/K, and it decreases with a decrease in Sb2Te3 thickness. Such low-temperature coefficient would favor to achieve a high figure of merit (ZT) and pave the way to use this material as an excellent candidate for thermoelectric materials. We have estimated the thermal conductivity of Sb2Te3 flake with the thickness of 115 nm supported on 300-nm SiO2/Si substrate which is found to be ~ 10 W/m–K. The slightly higher thermal conductivity value suggests that the supporting substrate significantly affects the heat dissipation of the Sb2Te3 flake.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yifei Li ◽  
Xin Wen ◽  
Changjie Tan ◽  
Ning Li ◽  
Ruijie Li ◽  
...  

Owing to its irreplaceable roles in new functional devices, such as universal substrates and excellent layered insulators, high-quality hexagonal BN (hBN) crystals are exceedingly required in the field of two-dimensional...


Sign in / Sign up

Export Citation Format

Share Document