scholarly journals Sarcopoterium spinosum Inhibited the Development of Non-Alcoholic Steatosis and Steatohepatitis in Mice

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3044 ◽  
Author(s):  
Ayala Wollman ◽  
Tehila Daniel ◽  
Tovit Rosenzweig

Non-alcoholic fatty liver disease (NAFLD) is a comorbidity of obesity, which gradually develops from hepatic steatosis into steatohepatitis (NASH) and eventually even into fibrosis or hepatic carcinoma. To date, there has been no specific and effective treatment for NAFLD. Sarcopoterium spinosum extract (SSE) was found to improve insulin sensitivity. Recognizing the intimate link between insulin resistance and NAFLD, the aim of this study was to investigate the effectivity of SSE in the prevention and management of NAFLD at various severities. SSE was given to high-fat diet (HFD)-fed mice (steatosis model) or to mice given a Western diet (WD) in the short or long term (NASH prevention or treatment, respectively). SSE reduced body weight accumulation, improved glucose tolerance and insulin sensitivity and prevented the development of hepatic steatosis. SSE also blocked the progression of liver disease toward NASH in a dose-dependent manner. The expression of genes involved in lipid metabolism, inflammation, and antioxidant machinery was regulated by SSE in both models of steatosis and NASH development. However, SSE failed to reverse the hepatic damage in the advanced model of NASH. In summary, SSE might be considered as a botanical supplement for the prevention and treatment of hepatic steatosis, and for slowing the deterioration toward NASH.

2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Jie Li ◽  
Xinle Li ◽  
Daquan Liu ◽  
Shiqi Zhang ◽  
Nian Tan ◽  
...  

AbstractNon-alcoholic fatty liver disease (NAFLD) is the most common liver disorder and frequently exacerbates in postmenopausal women. In NAFLD, the endoplasmic reticulum (ER) plays an important role in lipid metabolism, in which salubrinal is a selective inhibitor of eIF2α de-phosphorylation in response to ER stress. To determine the potential mechanism of obesity-induced NAFLD, we employed salubrinal and evaluated the effect of ER stress and autophagy on lipid metabolism. Ninety-five female C57BL/6 mice were randomly divided into five groups: standard chow diet, high-fat (HF) diet, HF with salubrinal, HF with ovariectomy, and HF with ovariectomy and salubrinal. All mice except for SC were given HF diet. After the 8-week obesity induction, salubrinal was subcutaneously injected for the next 8 weeks. The expression of ER stress and autophagy markers was evaluated in vivo and in vitro. Compared to the normal mice, the serum lipid level and adipose tissue were increased in obese mice, while salubrinal attenuated obesity by blocking lipid disorder. Also, the histological severity of hepatic steatosis and fibrosis in the liver and lipidosis was suppressed in response to salubrinal. Furthermore, salubrinal inhibited ER stress by increasing the expression of p-eIF2α and ATF4 with a decrease in the level of CHOP. It promoted autophagy by increasing LC3II/I and inhibiting p62. Correlation analysis indicated that lipogenesis in the development of NAFLD was associated with ER stress. Collectively, we demonstrated that eIF2α played a key role in obesity-induced NAFLD, and salubrinal alleviated hepatic steatosis and lipid metabolism by altering ER stress and autophagy through eIF2α signaling.


Sign in / Sign up

Export Citation Format

Share Document