scholarly journals Poria Cocos Ameliorates Bone Loss in Ovariectomized Mice and Inhibits Osteoclastogenesis In Vitro

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1383 ◽  
Author(s):  
Youn-Hwan Hwang ◽  
Seon-A Jang ◽  
Ami Lee ◽  
Taesoo Kim ◽  
Hyunil Ha

Estrogen deprivation in postmenopausal women causes disruption of bone homeostasis, resulting in bone loss and osteoporosis. Conventional therapies can exert adverse effects. The sclerotum of Poria cocos has been used in traditional medicine and as a nutritional supplement and to treat various diseases. However, the effects of P. cocos on the bone remain largely undetermined. In this study, we examined the effects of P. cocos hydroethanolic extract (PC) on osteoclast differentiation and estrogen-deprivation-induced bone loss in an ovariectomized mouse model of postmenopausal osteoporosis. PC-mediated inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and resorption activity suppressed RANKL-induced expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which is a crucial transcription factor for osteoclast differentiation. In ovariectomized mice, PC markedly alleviated trabecular bone loss and reduced the accumulation of lipid droplets in the bone marrow. We additionally identified ten triterpenoid constituents of PC using UPLC-MS/MS analysis. Our results indicate that PC negatively regulated osteoclast differentiation and function, and can potentially be used to manage postmenopausal osteoporosis.

2016 ◽  
Vol 36 (19) ◽  
pp. 2451-2463 ◽  
Author(s):  
Takashi Iezaki ◽  
Kazuya Fukasawa ◽  
Gyujin Park ◽  
Tetsuhiro Horie ◽  
Takashi Kanayama ◽  
...  

Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here, we show that the transcriptional coactivator/repressor interferon-related developmental regulator 1 (Ifrd1) is expressed in osteoclast lineages and represents a component of the machinery that regulates bone homeostasis. Ifrd1 expression was transcriptionally regulated in preosteoclasts by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) through activator protein 1. Global deletion of murineIfrd1increased bone formation and decreased bone resorption, leading to a higher bone mass. Deletion ofIfrd1in osteoclast precursors prevented RANKL-induced bone loss, although no bone loss was observed under normal physiological conditions. RANKL-dependent osteoclastogenesis was impairedin vitroinIfrd1-deleted bone marrow macrophages (BMMs).Ifrd1deficiency increased the acetylation of p65 at residues K122 and K123 via the inhibition of histone deacetylase-dependent deacetylation in BMMs. This repressed the NF-κB-dependent transcription of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), an essential regulator of osteoclastogenesis. These findings suggest that an Ifrd1/NF-κB/NFATc1 axis plays a pivotal role in bone remodelingin vivoand represents a therapeutic target for bone diseases.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1831 ◽  
Author(s):  
Youn-Hwan Hwang ◽  
Seon-A Jang ◽  
Taesoo Kim ◽  
Hyunil Ha

In traditional oriental medicine, the fruit of Forsythia suspensa has been used as a nutritional supplement to alleviate inflammation and treat gastrointestinal diseases. However, there is no information available on its beneficial effects on bone. We investigated the beneficial effects of F. suspensa water extract (WFS) on osteoclast differentiation and bone loss. The microarchitecture of trabecular bone was analyzed by micro-computed tomography. Osteoclast differentiation was evaluated based on tartrate-resistant alkaline phosphatase activity, and bone resorption activity was examined on a bone-like mineral surface. The mechanism of action of WFS was assessed by evaluating the expression and activation of signaling molecules. Phytochemical constituents were identified and quantitated by ultrahigh-performance liquid chromatography–tandem mass spectrometry. WFS reduced ovariectomy-induced trabecular bone loss and inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and resorption activity. WFS suppressed RANKL-induced expression of nuclear factor of activated T cells cytoplasmic 1, a crucial transcription factor for osteoclast differentiation by decreasing c-Fos protein levels and suppressing the activation of p38 and c-Jun-N-terminal kinase. We also identified 12 phytochemicals in WFS including lignans, phenylethanoids, and flavonoids. Collectively, these results suggest that WFS inhibits osteoclast differentiation and can potentially be used to treat postmenopausal osteoporosis.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 345 ◽  
Author(s):  
Sheng-Hua Lu ◽  
Yi-Jan Hsia ◽  
Kuang-Chung Shih ◽  
Tz-Chong Chou

Excessive osteoclast differentiation and/or function plays a pivotal role in the pathogenesis of bone diseases such as osteoporosis and rheumatoid arthritis. Here, we examined whether fucoidan, a sulfated polysaccharide present in brown algae, attenuates receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and lipopolysaccharide (LPS)-induced bone resorption in vivo, and investigated the molecular mechanisms involved. Our results indicated that fucoidan significantly inhibited osteoclast differentiation in RANKL-stimulated macrophages and the bone resorbing activity of osteoclasts. The effects of fucoidan may be mediated by regulation of Akt/GSK3β/PTEN signaling and suppression of the increase in intracellular Ca2+ level and calcineurin activity, thereby inhibiting the translocation of nuclear factor-activated T cells c1 (NFATc1) into the nucleus. However, fucoidan-mediated NFATc1 inactivation was greatly reversed by kenpaullone, a GSK3β inhibitor. In addition, using microcomputer tomography (micro-CT) scanning and bone histomorphometry, we found that fucoidan treatment markedly prevented LPS-induced bone erosion in mice. Collectively, we demonstrated that fucoidan was capable of inhibiting osteoclast differentiation and inflammatory bone loss, which may be modulated by regulation of Akt/GSK3β/PTEN/NFATc1 and Ca2+/calcineurin signaling cascades. These findings suggest that fucoidan may be a potential agent for the treatment of osteoclast-related bone diseases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sungyub Lee ◽  
Minsun Kim ◽  
Sooyeon Hong ◽  
Eom Ji Kim ◽  
Jae-Hyun Kim ◽  
...  

Postmenopausal osteoporosis is caused by an imbalance between osteoclasts and osteoblasts and causes severe bone loss. Osteoporotic medicines are classified into bone resorption inhibitors and bone formation promoters according to the mechanism of action. Long-term use of bisphosphonate and selective estrogen receptor modulators (SERMs) can cause severe side effects in postmenopausal osteoporosis patients. Therefore, it is important to find alternative natural products that reduce osteoclast activity and increase osteoblast formation. Sparganii Rhizoma (SR) is the dried tuberous rhizome of Sparganium stoloniferum Buchanan-Hamilton and is called “samreung” in Korea. However, to date, the effect of SR on osteoclast differentiation and the ovariectomized (OVX)-induced bone loss model has not been reported. In vitro, tartrate-resistant acid phosphatase (TRAP) staining, western blots, RT-PCR and other methods were used to examine the effect of SR on osteoclast differentiation and osteoblasts. In vivo, we confirmed the effect of SR in a model of OVX-induced postmenopausal osteoporosis. SR inhibited osteoclast differentiation and decreased the expression of TNF receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells 1 (NFATc1) and c-Fos pathway. In addition, SR stimulates osteoblast differentiation and increased protein expression of the bone morphogenetic protein 2 (BMP-2)/SMAD signaling pathway. Moreover, SR protected against bone loss in OVX-induced rats. Our results appear to advance our knowledge of SR and successfully demonstrate its potential role as a osteoclastogenesis-inhibiting and osteogenesis-promoting herbal medicine for the treatment of postmenopausal osteoporosis.


2020 ◽  
Vol 13 (12) ◽  
pp. 468
Author(s):  
Mi-Hwa Kim ◽  
Hyung-Jin Lim ◽  
Seon Gyeong Bak ◽  
Eun-Jae Park ◽  
Hyun-Jae Jang ◽  
...  

Eudebeiolide B is a eudesmane-type sesquiterpenoid compound isolated from Salvia plebeia R. Br., and little is known about its biological activity. In this study, we investigated the effects of eudebeiolide B on osteoblast differentiation, receptor activator nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and ovariectomy-induced bone loss in vivo. Eudebeiolide B induced the expression of alkaline phosphatase (ALP) and calcium accumulation during MC3T3-E1 osteoblast differentiation. In mouse bone marrow macrophages (BMMs), eudebeiolide B suppressed RANKL-induced osteoclast differentiation of BMMs and bone resorption. Eudebeiolide B downregulated the expression of nuclear factor of activated T-cells 1 (NFATc1) and c-fos, transcription factors induced by RANKL. Moreover, eudebeiolide B attenuated the RANKL-induced expression of osteoclastogenesis-related genes, including cathepsin K (Ctsk), matrix metalloproteinase 9 (MMP9) and dendrocyte expressed seven transmembrane protein (DC-STAMP). Regarding the molecular mechanism, eudebeiolide B inhibited the phosphorylation of Akt and NF-κB p65. In addition, it downregulated the expression of cAMP response element-binding protein (CREB), Bruton’s tyrosine kinase (Btk) and phospholipase Cγ2 (PLCγ2) in RANKL-induced calcium signaling. In an ovariectomized (OVX) mouse model, intragastric injection of eudebeiolide B prevented OVX-induced bone loss, as shown by bone mineral density and contents, microarchitecture parameters and serum levels of bone turnover markers. Eudebeiolide B not only promoted osteoblast differentiation but inhibited RANKL-induced osteoclastogenesis through calcium signaling and prevented OVX-induced bone loss. Therefore, eudebeiolide B may be a new therapeutic agent for osteoclast-related diseases, including osteoporosis, rheumatoid arthritis and periodontitis.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1181
Author(s):  
Seon-A Jang ◽  
Youn-Hwan Hwang ◽  
Taesoo Kim ◽  
Hyun Yang ◽  
Jun Lee ◽  
...  

Estrogen deficiency in postmenopausal women causes homeostatic imbalance of bone, resulting in bone loss and osteoporosis. Agastache rugosa, a plant belonging to the Lamiaceae family, is an aromatic herb, and the leaves of this herb are widely used as food ingredients. Extracts of A. rugosa have various bioactivities including anti-HIV integration, anti-inflammatory, and anti-atherogenic properties. However, the beneficial effect of A. rugosa on bone has not been studied. Therefore, we investigated the effects of water extract of A. rugosa (WEAR) on osteoclast differentiation and estrogen deficiency-induced bone loss in ovariectomized (OVX) mice as an animal model for postmenopausal osteoporosis. The oral administration of WEAR remarkably improved OVX-induced trabecular bone loss and fat accumulation in the bone marrow. WEAR suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in osteoclast precursor cells, subsequently inhibiting resorption activity on a bone mimetic surface. WEAR inhibited the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key osteoclastogenic transcription factors, by decreasing RANKL-induced activation of mitogen-activated protein kinases (MAPKs), and nuclear factor-κB (NF-κB) pathways. We also identified seventeen phytochemicals present in WEAR, including five phenols and twelve flavonoids, and found eleven bioactive constituents that have anti-osteoclastogenic effects. Collectively, these results suggest that WEAR could be used to treat and prevent postmenopausal osteoporosis by suppressing osteoclastogenesis.


2018 ◽  
Vol 51 (6) ◽  
pp. 2858-2871 ◽  
Author(s):  
Xiao Chen ◽  
Xiaoqun Li ◽  
Xiao Zhai ◽  
Xin Zhi ◽  
Liehu Cao ◽  
...  

Background/Aims: Bone homeostasis is associated with the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Unbalanced bone homeostasis as a result of reduced osteogenesis or excessive osteoclastogenesis can lead to disorders such as osteoporosis, Paget’s disease, and rheumatoid arthritis. Shikimic acid is a cyclohexanecarboxylic acid, reported to exhibit pharmacological properties including anti-inflammatory and antioxidant activities. However, its effects on bone homeostasis remain unknown. Methods: First, the in vitro MTT cell viability assay was performed. Tartrate-resistant acid phosphatase (TRAP) and actin ring formation assays, as well as immunofluorescence staining were then performed to evaluate osteoclastogenesis. Potential signaling pathways were characterized by western blotting and verified in overexpression experiments. Related factors were examined by western blotting, reverse transcription polymerase chain reaction, electrophoretic mobility shift assay, and co-immunoprecipitation. Ovariectomized mice were used for the in vivo study. Results: TRAP staining showed that shikimic acid significantly inhibited osteoclastogenesis and pit resorption in bone marrow monocytes and RAW264.7 cells, and actin ring formation assays showed that shikimic acid suppressed the bone resorption function of osteoclasts. Furthermore, shikimic acid inhibited the receptor activator of nuclear factor-κB RANK/tumor necrosis factor receptor-associated factor 6 (TRAF6) association, suppressed nuclear factor-κB and mitogen-activated protein kinase signaling pathways, and downregulated nuclear factor of activated T-cell cytoplasmic 1. The expression of osteoclastogenesis biomarkers, including TRAF6, calcitonin receptor, TRAP, cathepsin K, and matrix metalloproteinase-9, was inhibited. In vivo, shikimic acid also significantly ameliorated bone loss and prevented osteoclastogenesis in ovariectomized mice. Conclusion: Shikimic acid inhibited osteoclastogenesis and osteoclast function by blocking RANK ligand-induced recruitment of TRAF6, as well as downstream signaling pathways in vitro. Shikimic acid also reduced ovariectomy-induced osteoclastogenesis and bone loss in vivo.


2019 ◽  
Vol 47 (02) ◽  
pp. 439-455 ◽  
Author(s):  
Sang-Yong Han ◽  
Yun-Kyung Kim

Osteoporosis is a common disorder of bone remodeling, marked by excessive osteoclast formation. Recent studies indicated that berberine (BBR) is a potential natural drug for the treatment of various bone diseases. However, it still needs to be further studied for the treatment of osteoporosis. The current study investigated the inhibitory effects of BBR on receptor activator of nuclear factor-[Formula: see text]B ligand (RANKL)-induced osteoclast differentiation in vitro and in vivo. Cell-based assays were performed using osteoclasts generated in cultures of murine bone marrow-derived macrophages (BMMs) treated with RANKL and M-CSF. The effects of BBR on in vivo lipopolysaccharide (LPS)-mediated bone loss were evaluated using ICR mice. BBR significantly inhibited TRAP-positive osteoclast formation induced by RANKL. BBR also inhibited RANKL-induced Akt, p38 and ERK phosphorylation and I[Formula: see text]B degradation, and suppressed RANKL-induced expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which is a key transcription factors for osteoclast formation. BBR reduced the mRNA levels of osteoclast markers, including TRAP, osteoclast-associated receptor (OSCAR), cathepsin K, and ATPase H[Formula: see text] transporting V0 subunit d2 (ATP6v0d2). Moreover, BBR prevented LPS-mediated bone loss in vivo. We suggest BBR as a natural compound that can be a potential therapeutic agent for osteoclast-related bone diseases.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Gyhye Yoo ◽  
Ji-Hye Park ◽  
Yang-Ju Son ◽  
Chang Ho Lee ◽  
Chu Won Nho

Abstract Objectives Postmenopausal osteoporosis, a condition of low bone density consequent to decreased estrogen levels after menopause in women, is generally treated with hormone replacement therapy. However, long-term hormone use may cause critical side effects including breast cancer. Alternatively, phytoestrogens, which have similar structures to steroid hormones, are reported to cure postmenopausal symptoms with fewer side effects. Here, we investigated the effects of EtOH extract of Circaea mollis Siebold & Zucc. (EECM), a traditional herbal medicine in Asia that exhibits anti-arthritic activities, on postmenopausal osteoporosis. Methods In vitro model: MCF7 breast cancer cells and MC3T3-E1 pre-osteoblast cells were utilized to estimate estrogenic and osteogenic activity. Osteoblastic markers were measured by western blot and real-time PCR. In vivo model: Female mature C57BL/6 mice were ovariectomized and oral administrated with 10 mg/kg and 40 mg/kg of EECM respectively. Results EECM increased alkaline phosphatase activity and osteoblastic markers including osteoprotegerin at day 6 during mouse preosteoblast differentiation. EECM inhibited osteoclast differentiation and bone resorption in an osteoblast-osteoclast primary co-culture system via osteoprotegerin-mediated RANK/RANKL signaling. In ovariectomized mice, EECM prevented bone mineral density decrease and recovered osteoblastic molecules. Conclusions EECM enhanced the differentiation of osteoblasts via osteogenic markers and modulated RANK/RANKL signaling via an elevation of OPG from osteoblasts in vitro and in vivo. Therefore, EECM may be effective in preventing bone loss and offers a promising alternative for the nutritional management of postmenopausal osteoporosis. Funding Sources This work was supported by the Center Project for the Korea-Mongolia Science and Technology Cooperation (2U06170). Supporting Tables, Images and/or Graphs


2021 ◽  
Vol 12 ◽  
Author(s):  
Seon-A Jang ◽  
Youn-Hwan Hwang ◽  
Hyun Yang ◽  
Jin Ah Ryuk ◽  
Taesoo Kim ◽  
...  

Mentha arvensis L., is an aromatic herb that belongs to the Lamiaceae family and is widely used in medicinal applications, essential oil applications, and food flavoring. The extract of M. arvensis has been reported to exert sedative-hypnotic, anti-inflammatory, anti-fungal, and anti-bacterial effects. However, its effects on bone metabolism have not yet been studied. Here, we investigated the effects of the water extract of M. arvensis (WEMA) on osteoclast formation in vitro and bone loss in an ovariectomized mouse model. We found that WEMA inhibited osteoclast differentiation by directly acting on osteoclast precursor cells. WEMA inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T cells c1 (NFATc1), crucial transcription factors for osteoclast differentiation, by suppressing RANKL-induced activation of early signaling pathways such as those of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). In addition, oral administration of WEMA suppressed ovariectomy-induced trabecular bone loss in mice. We additionally identified phytochemicals in WEMA that are known to have anti-osteoclastogenic or anti-osteoporotic properties. Collectively, these results suggest that WEMA is a promising herbal candidate that can be used to prevent or treat postmenopausal osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document