scholarly journals Circaea Mollis Siebold & Zucc. Prevents Bone Loss in a Mouse Postmenopausal Osteoporosis Model by Promoting of Osteoblast Differentiation (P06-130-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Gyhye Yoo ◽  
Ji-Hye Park ◽  
Yang-Ju Son ◽  
Chang Ho Lee ◽  
Chu Won Nho

Abstract Objectives Postmenopausal osteoporosis, a condition of low bone density consequent to decreased estrogen levels after menopause in women, is generally treated with hormone replacement therapy. However, long-term hormone use may cause critical side effects including breast cancer. Alternatively, phytoestrogens, which have similar structures to steroid hormones, are reported to cure postmenopausal symptoms with fewer side effects. Here, we investigated the effects of EtOH extract of Circaea mollis Siebold & Zucc. (EECM), a traditional herbal medicine in Asia that exhibits anti-arthritic activities, on postmenopausal osteoporosis. Methods In vitro model: MCF7 breast cancer cells and MC3T3-E1 pre-osteoblast cells were utilized to estimate estrogenic and osteogenic activity. Osteoblastic markers were measured by western blot and real-time PCR. In vivo model: Female mature C57BL/6 mice were ovariectomized and oral administrated with 10 mg/kg and 40 mg/kg of EECM respectively. Results EECM increased alkaline phosphatase activity and osteoblastic markers including osteoprotegerin at day 6 during mouse preosteoblast differentiation. EECM inhibited osteoclast differentiation and bone resorption in an osteoblast-osteoclast primary co-culture system via osteoprotegerin-mediated RANK/RANKL signaling. In ovariectomized mice, EECM prevented bone mineral density decrease and recovered osteoblastic molecules. Conclusions EECM enhanced the differentiation of osteoblasts via osteogenic markers and modulated RANK/RANKL signaling via an elevation of OPG from osteoblasts in vitro and in vivo. Therefore, EECM may be effective in preventing bone loss and offers a promising alternative for the nutritional management of postmenopausal osteoporosis. Funding Sources This work was supported by the Center Project for the Korea-Mongolia Science and Technology Cooperation (2U06170). Supporting Tables, Images and/or Graphs

Author(s):  
Rui Gong ◽  
Hong-Mei Xiao ◽  
Yin-Hua Zhang ◽  
Qi Zhao ◽  
Kuan-Jui Su ◽  
...  

Abstract Context Although metabolic profiles appear to play an important role in menopausal bone loss, the functional mechanisms by which metabolites influence bone mineral density (BMD) during menopause are largely unknown. Objective We aimed to systematically identify metabolites associated with BMD variation and their potential functional mechanisms in peri-/post-menopausal women. Design and Methods We performed serum metabolomic profiling and whole-genome sequencing for 517 perimenopausal (16%) and early postmenopausal (84%) women aged 41 to 64 years in this cross-sectional study. Partial least squares (PLS) regression and general linear regression analysis were applied to identify BMD-associated metabolites, and weighted gene co-expression network analysis was performed to construct co-functional metabolite modules. Furthermore, we performed Mendelian randomization analysis to identify causal relationships between BMD-associated metabolites and BMD variation. Finally, we explored the effects of a novel prominent BMD-associated metabolite on bone metabolism through both in vivo/in vitro experiments. Results Twenty metabolites and a co-functional metabolite module (consisting of fatty acids) were significantly associated with BMD variation. We found dodecanoic acid (DA), within the identified module, causally decreased total hip BMD. Subsequently, the in vivo experiments might support that dietary supplementation with DA could promote bone loss, as well as increase the osteoblast and osteoclast numbers in normal/ovariectomized mice. DA treatment differentially promoted osteoblast and osteoclast differentiation, especially for osteoclast differentiation at higher concentrations in vitro (e.g.,10, 100μM). Conclusions This study sheds light on metabolomic profiles associated with postmenopausal osteoporosis risk, highlighting the potential importance of fatty acids, as exemplified by DA, in regulating BMD.


Endocrinology ◽  
2021 ◽  
Author(s):  
Joo-Hee Choi ◽  
Ah-Ra Jang ◽  
Min-Jung Park ◽  
Dong-il Kim ◽  
Jong-Hwan Park

Abstract Melatonin, a pineal gland hormone, has been suggested to treat postmenopausal osteoporosis due to its inhibitory effect on osteoclast differentiation. We previously reported that protein arginine methyltransferase 1 (PRMT1) was an important mediator of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. However, the relationship between melatonin and PRMT1 in osteoclast differentiation and estrogen deficiency-induced osteoporosis is unclear. In this study, we investigated the inhibitory mechanisms of melatonin in vitro and in vivo by focusing on PRMT1. Melatonin treatment effectively blocked RANKL-induced osteoclastogenesis by inhibiting PRMT1 and asymmetric dimethylarginine (ADMA) expression. RANKL-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) and the phosphorylation of JNK were also suppressed by melatonin, and TRAF6 siRNA attenuated RANKL-induced p-JNK and PRMT1 production. Melatonin inhibited the transcriptional activity of NF-κB by interfering with the binding of PRMT1 and NF-κB subunit p65 in RANKL-treated BMDMs. Our results also revealed that melatonin inhibits RANKL-induced PRMT1 expression through receptors-independent pathway. Thus, the anti-osteoclastogenic effect of melatonin was mediated by a cascade of inhibition of RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling in melatonin receptors-independent pathway. In vivo, ovariectomy caused significant decreases in bone mineral density, but melatonin treatment alleviated the ovariectomized (OVX)-induced bone loss by inhibiting bone resorption. Furthermore, the expression PRMT1 and TRAP mRNA was upregulated in OVX-femurs, but effectively suppressed by melatonin injection. These findings suggest that melatonin inhibited osteoclast differentiation and estrogen deficiency-induced osteoporosis by suppressing RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling cascades in melatonin receptors-independent pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minsun Kim ◽  
MinBeom Kim ◽  
Jae-Hyun Kim ◽  
SooYeon Hong ◽  
Dong Hee Kim ◽  
...  

Osteoporosis is characterized by a decrease in bone microarchitecture with an increased risk of fracture. Long-term use of primary treatments, such as bisphosphonates and selective estrogen receptor modulators, results in various side effects. Therefore, it is necessary to develop alternative therapeutics derived from natural products. Crataegus pinnatifida Bunge (CPB) is a dried fruit used to treat diet-induced indigestion, loss of appetite, and diarrhea. However, research into the effects of CPB on osteoclast differentiation and osteoporosis is still limited. In vitro experiments were conducted to examine the effects of CPB on RANKL-induced osteoclast differentiation in RAW 264.7 cells. Moreover, we investigated the effects of CPB on bone loss in the femoral head in an ovariectomized rat model using microcomputed tomography. In vitro, tartrate-resistant acid phosphatase (TRAP) staining results showed the number of TRAP-positive cells, and TRAP activity significantly decreased following CPB treatment. CPB also significantly decreased pit formation. Furthermore, CPB inhibited osteoclast differentiation by suppressing NFATc1, and c-Fos expression. Moreover, CPB treatment inhibited osteoclast-related genes, such as Nfatc1, Ca2, Acp5, mmp9, CtsK, Oscar, and Atp6v0d2. In vivo, bone mineral density and structure model index were improved by administration of CPB. In conclusion, CPB prevented osteoclast differentiation in vitro and prevented bone loss in vivo. Therefore, CPB could be a potential alternative medicine for bone diseases, such as osteoporosis.


2011 ◽  
Vol 208 (9) ◽  
pp. 1849-1861 ◽  
Author(s):  
Yu-Hsiang Hsu ◽  
Wei-Yu Chen ◽  
Chien-Hui Chan ◽  
Chih-Hsing Wu ◽  
Zih-Jie Sun ◽  
...  

IL-20 is a proinflammatory cytokine of the IL-10 family that is involved in psoriasis, rheumatoid arthritis, atherosclerosis, and stroke. However, little is known about the role of IL-20 in bone destruction. We explored the function of IL-20 in osteoclastogenesis and the therapeutic potential of anti–IL-20 monoclonal antibody 7E for treating osteoporosis. Higher serum IL-20 levels were detected in patients with osteopenia and osteoporosis and in ovariectomized (OVX) mice. IL-20 mediates osteoclastogenesis by up-regulating the receptor activator of NF-κB (RANK) expression in osteoclast precursor cells and RANK ligand (RANKL) in osteoblasts. 7E treatment completely inhibited osteoclast differentiation induced by macrophage colony-stimulating factor (M-CSF) and RANKL in vitro and protected mice from OVX-induced bone loss in vivo. Furthermore, IL-20R1–deficient mice had significantly higher bone mineral density (BMD) than did wild-type controls. IL-20R1 deficiency also abolished IL-20–induced osteoclastogenesis and increased BMD in OVX mice. We have identified a pivotal role of IL-20 in osteoclast differentiation, and we conclude that anti–IL-20 monoclonal antibody is a potential therapeutic for protecting against osteoporotic bone loss.


Author(s):  
Eunkuk Park ◽  
Jeonghyun Kim ◽  
Mun-Chang Kim ◽  
Subin Yeo ◽  
Jieun Kim ◽  
...  

Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of broken bones. Previous studies have demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing the osteoblast differentiation. A bioactive compound, Kukoamine B (KB), was identified from a fractionation of LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. For the in vivo experiments, KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.


2020 ◽  
Vol 4 (3) ◽  
pp. 351-357
Author(s):  
Sanusi Bello Mada ◽  
Philip Cefas Abaya ◽  
Dorcas Bolanle James ◽  
Muawiya Musa Abarshi ◽  
Muhammad Said Tanko

Postmenopausal osteoporosis is a global health problem characterized by decreased in bone mineral density (BMD) and progressive deterioration of microarchitecture and subsequent increase in bone fragility and susceptibility to fracture.  More than 200 million people suffer from osteoporosis worldwide  with about 8.9 million fractures and the prevalence rate of osteoporosis is expected to increase significantly in the future because of increased in life expectancy and aging population. Milk-derived bioactive peptides from cow, goat, sheep, buffalo, and camel exhibit several potential health promoting effect including antiosteoporosis, antihypertensive, antioxidative, antithrombotic, immunomodulatory and anti-inflammatory effects. Epidemiological and intervention studies have shown that milk and milk-derived peptides prevented bone loss in pre- and postmenopausal women. Moreover, quite a lot of studies have reported that milk-derived bioactive peptides can induce osteoblast cell proliferation, differentiation and also prevented bone loss in osteoporotic rats model. Thus, milk-derived peptides exhibits beneficial effect against bone-related diseases and can be of particular interest towards prevention and management of postmenopausal osteoporosis. Hence, the present review summarizes various studies using ISI, SCOPUS and PubMed indexed journals to elucidate the potential role of milk-derived bioactive peptides with in vitro and in vivo antiosteoporotic property


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2716 ◽  
Author(s):  
Eunkuk Park ◽  
Jeonghyun Kim ◽  
Subin Yeo ◽  
Eunguk Lim ◽  
Chun Whan Choi ◽  
...  

Osteoporosis is characterized by low bone density and quality with high risk of bone fracture. Here, we investigated anti-osteoporotic effects of natural plants (Lycii Radicis Cortex (LRC) and Achyranthes japonica (AJ)) in osteoblast and osteoclast cells in vitro and ovariectomized mice in vivo. Combined LRC and AJ enhanced osteoblast differentiation and mineralized bone-forming osteoblasts by the up-regulation of bone metabolic markers (Alpl, Runx2 and Bglap) in the osteoblastic cell line MC3T3-E1. However, LRC and AJ inhibited osteoclast differentiation of monocytes isolated from mouse bone marrow. In vivo experiments showed that treatment of LRC+AJ extract prevented OVX-induced trabecular bone loss and osteoclastogenesis in an osteoporotic animal model. These results suggest that LRC+AJ extract may be a good therapeutic agent for the treatment and prevention of osteoporotic bone loss.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1383 ◽  
Author(s):  
Youn-Hwan Hwang ◽  
Seon-A Jang ◽  
Ami Lee ◽  
Taesoo Kim ◽  
Hyunil Ha

Estrogen deprivation in postmenopausal women causes disruption of bone homeostasis, resulting in bone loss and osteoporosis. Conventional therapies can exert adverse effects. The sclerotum of Poria cocos has been used in traditional medicine and as a nutritional supplement and to treat various diseases. However, the effects of P. cocos on the bone remain largely undetermined. In this study, we examined the effects of P. cocos hydroethanolic extract (PC) on osteoclast differentiation and estrogen-deprivation-induced bone loss in an ovariectomized mouse model of postmenopausal osteoporosis. PC-mediated inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and resorption activity suppressed RANKL-induced expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which is a crucial transcription factor for osteoclast differentiation. In ovariectomized mice, PC markedly alleviated trabecular bone loss and reduced the accumulation of lipid droplets in the bone marrow. We additionally identified ten triterpenoid constituents of PC using UPLC-MS/MS analysis. Our results indicate that PC negatively regulated osteoclast differentiation and function, and can potentially be used to manage postmenopausal osteoporosis.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1886
Author(s):  
Sang-Yong Han ◽  
June-Hyun Kim ◽  
Eun-Heui Jo ◽  
Yun-Kyung Kim

The aim of this study was to evaluate the effects of root bark of Eleutherococcus sessiliflorus (ES) on osteoclast differentiation and function in vitro and in vivo. In vitro, we found that ES significantly inhibited the RANKL-induced formation of TRAP-positive multinucleated osteoclasts and osteoclastic bone resorption without cytotoxic effects. ES markedly downregulated the expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1); c-Fos; and osteoclast-related marker genes, such as TRAP, osteoclast-associated receptor (OSCAR), matrix metalloproteinase-9 (MMP-9), calcitonin receptor, cathepsin K, the 38 kDa d2 subunit of the vacuolar H+-transporting lysosomal ATPase (Atp6v0d2), dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-stimulatory transmembrane protein (OC-STAMP). These effects were achieved by inhibiting the RANKL-mediated activation of MAPK signaling pathway proteins, including p38, ERK, and JNK. In vivo, ES attenuated OVX-induced decrease in bone volume to tissue volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and bone mineral density, but increased trabecular separation (Tb.Sp) in the femur. Collectively, our findings showed that ES inhibited RANKL-activated osteoclast differentiation in bone marrow macrophages and prevented OVX-mediated bone loss in rats. These findings suggest that ES has the potential to be used as a therapeutic agent for bone-related diseases, such as osteoporosis.


2021 ◽  
Vol 22 (19) ◽  
pp. 10642
Author(s):  
Chang Gun Lee ◽  
Jeonghyun Kim ◽  
Seung Hee Yun ◽  
Seokjin Hwang ◽  
Hyoju Jeon ◽  
...  

Bone remodeling is a continuous process of bone synthesis and destruction that is regulated by osteoblasts and osteoclasts. Here, we investigated the anti-osteoporotic effects of morroniside in mouse preosteoblast MC3T3-E1 cells and mouse primary cultured osteoblasts and osteoclasts in vitro and ovariectomy (OVX)-induced mouse osteoporosis in vivo. Morroniside treatment enhanced alkaline phosphatase activity and positively stained cells via upregulation of osteoblastogenesis-associated genes in MC3T3-E1 cell lines and primary cultured osteoblasts. However, morroniside inhibited tartrate-resistant acid phosphatase activity and TRAP-stained multinucleated positive cells via downregulation of osteoclast-mediated genes in primary cultured monocytes. In the osteoporotic animal model, ovariectomized (OVX) mice were administered morroniside (2 or 10 mg/kg/day) for 12 weeks. Morroniside prevented OVX-induced bone mineral density (BMD) loss and reduced bone structural compartment loss in the micro-CT images. Taken together, morroniside promoted increased osteoblast differentiation and decreased osteoclast differentiation in cells, and consequently inhibited OVX-induced osteoporotic pathogenesis in mice. This study suggests that morroniside may be a potent therapeutic single compound for the prevention of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document