scholarly journals The ω-3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition Dependent Adult Patients: Functional Lipidomics Approach

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2351
Author(s):  
Vit Kosek ◽  
Marie Heczkova ◽  
Frantisek Novak ◽  
Eva Meisnerova ◽  
Olga Novákova ◽  
...  

Omega-3 polyunsaturated fatty acids (ω-3PUFAs) are introduced into parenteral nutrition (PN) as hepatoprotective but may be susceptible to the lipid peroxidation while olive oil (OO) is declared more peroxidation resistant. We aimed to estimate how the lipid composition of PN mixture affects plasma and erythrocyte lipidome and the propensity of oxidative stress. A cross-sectional comparative study was performed in a cohort of adult patients who were long-term parenterally administered ω-3 PUFAs without (FO/–, n = 9) or with (FO/OO, n = 13) olive oil and healthy age- and sex-matched controls, (n = 30). Lipoperoxidation assessed as plasma and erythrocyte malondialdehyde content was increased in both FO/– and FO/OO groups but protein oxidative stress (protein carbonyls in plasma) and low redox status (GSH/GSSG in erythrocytes) was detected only in the FO/– subcohort. The lipidome of all subjects receiving ω-3 PUFAs was enriched with lipid species containing ω-3 PUFAs (FO/–˃FO/OO). Common characteristic of all PN-dependent patients was high content of fatty acyl-esters of hydroxy-fatty acids (FAHFAs) in plasma while acylcarnitines and ceramides were enriched in erythrocytes. Plasma and erythrocyte concentrations of plasmanyls and plasmalogens (endogenous antioxidants) were decreased in both patient groups with a significantly more pronounced effect in FO/–. We confirmed the protective effect of OO in PN mixtures containing ω-3 PUFAs.

Nutrients ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 895 ◽  
Author(s):  
Michela Zanetti ◽  
Gianluca Gortan Cappellari ◽  
Davide Barbetta ◽  
Annamaria Semolic ◽  
Rocco Barazzoni

Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 274 ◽  
Author(s):  
Philip C. Calder

Lipids used in intravenous nutrition support (i.e., parenteral nutrition) provide energy, building blocks, and essential fatty acids. These lipids are included as emulsions since they need to be soluble in an aqueous environment. Fish oil is a source of bioactive omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid). Lipid emulsions, including fish oil, have been used for parenteral nutrition for adult patients post-surgery (mainly gastrointestinal). This has been associated with alterations in biomarkers of inflammation and immune defense, and in some studies, a reduction in length of intensive care unit and hospital stay. These benefits, along with a reduction in infections, are emphasized through recent meta-analyses. Perioperative administration of fish oil may be superior to postoperative administration, but this requires further exploration. Parenteral fish oil has been used in critically ill adult patients. Here, the influence on inflammatory processes, immune function, and clinical endpoints is less clear. However, some studies found reduced inflammation, improved gas exchange, and shorter length of hospital stay in critically ill patients if they received fish oil. Meta-analyses do not present a consistent picture but are limited by the small number and size of studies. More and better trials are needed in patient groups in which parenteral nutrition is used and where fish oil, as a source of bioactive omega-3 fatty acids, may offer benefits.


2014 ◽  
Vol 13 (6) ◽  
pp. 32-37
Author(s):  
M. N. Sin’kova ◽  
T. V. Pepelyaeva ◽  
L. K. Isakov ◽  
N. I. Tarasov ◽  
A. T. Teplyakov

Currently there is enough evidence for that the use of omega-3-faty acids compounds in ischemic heart disease is followed by the decrease of mortality, and the efficacy of this usage in multivessel coronary lesions after primary percutaneous intervention (PCI) has not been studied.Aim.To evaluate the efficacy of long-term intake of the omega-3-polyunsaturated fatty acids compounds on the course of ischemic heart disease at the background of multiple coronary lesion after primary PCI.Material and methods.Totally 101 patient included at the age of 35-70 y.o., who had underwent primary PCI for the myocardial infarction with ST elevation and multiple vessel lesion of coronary arteries. The patients were selected into 2 groups: 1 group (n=68) — conservative tactics with the standard pharmacotherapy; 2nd group (n=33) — Omacor was added to the standard therapy.Results.In 36 months of follow-up in the Omacor group there was significant decrease of repeated myocardial infarctions, decompensating heart failure, angina progression and rhythm disorders. In 2nd group patients during the 36-month follow-up a better antiischemic effect achieved with 80,9% decrease of angina from the baseline (p<0,047) and by 27,6% of the heart failure severity. The increase of exercise tolerance by the 6-minute walking test during 36 months was the highest in the 2nd group — by 65%.Conclusion.Long-term prescription of omega-3-polyunsaturated fatty acids in ST elevation myocardial infarction with multiple vessel coronary lesions after primary PCI leads to the improvement of clinical condition, which then leads to the increase of exercise tolerance and better life quality. 


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1668
Author(s):  
Ting-Hsuan Tang ◽  
Juen-Haur Hwang ◽  
Ting-Hua Yang ◽  
Chuan-Jen Hsu ◽  
Chen-Chi Wu ◽  
...  

Background: Age-related hearing impairment (ARHI), the most common sensory deficit in the elderly, is associated with enormous social and public health burdens. Emerging evidence has suggested that obesity and comorbidities might increase the risk of ARHI. However, no reviews have been published that address the role of nutritional interventions for obesity and comorbidities in the prevention of ARHI. Methods: A PubMed database search was conducted to identify the relationship between obesity and ARHI. “Obesity”, “metabolic syndrome”, “adipose-derived hormone”, “fatty acid”, and “age-related hearing impairment” were included as keywords. Results: A total of 89 articles was analyzed with 39 articles of relevance to ARHI. A high-fat diet may induce oxidative stress, mitochondrial damage, and apoptosis in the inner ear. Statins have been shown to delay the progression of ARHI by improving the lipid profile, reducing oxidative stress, and inhibiting endothelial inflammation. Aldosterone could exert protective effects against ARHI by upregulating the Na-K-2Cl co-transporter 1 in the cochlea. Omega-3 polyunsaturated fatty acids could preserve the cochlear microcirculation by reducing dyslipidemia and inhibiting inflammation. Alpha-lipoic acid and lecithin might delay the progression of ARHI by protecting cochlear mitochondrial DNA from damage due to oxidative stress. Tea and ginseng might protect against ARHI through their anti-obesity and anti-diabetic effects. Conclusions: Nutritional interventions for obesity and comorbidities, including a low-fat diet, supplementation with statins, aldosterone, omega-3 polyunsaturated fatty acids, alpha-lipoic acids, lecithin, tea, and ginseng, may protect against the development of ARHI.


1987 ◽  
Author(s):  
Paul K Schick ◽  
Barbara P Schick ◽  
Pat Webster

Dietary omega 3 polyunsaturated fatty acids are thought to prevent atherosclerosis. It has been proposed that omega 3 fatty acids modify platelet arachidonic acid (20:4) metabolism and platelet function and thereby reduce the incidence of thrombosis. We have previously shown that megakaryocytes (MK), like platelets, contain large amounts of esterified 20:4. The study addresses the following questions: 1) Do omega 3 fatty acids have a primary action on 20:4 metabolism in MK rather than in platelets. 2) Do omega 3 marine oils, docosahexaenoic acid (22:6) and eicosapentaenoic acid (20:5), have a different effect on megakaryocyte 20:4 metabolism than does alpha linolenic acid (18:3), the major omega-3 fatty acid present in normal diets? 3) How do omega-3 fatty acids modify megakaryocyte 20:4 acid metabolism? MK and platelets were isolated from guinea pigs. Isolated cells were incubated with radiolabeled 20:4 acid and unlabeled 18:3, 20:5 or 22:6. Incubations were terminated by lipid extraction, lipid classes were separated by thin-layer chromatography and the incorporation of radiolabeled 20:4 into lipid species was measured by scintillation spectrometry.MK (106) can incorporate about 4 times more 20:4 than 109 platelets. We have previously shown that 20:4 is incorporated into all endogenous pools of 20:4 in MK while platelets appear to have a limited capacity to incorporate 20:4 into phosphatidyl-ethanolamine (PE). Marine oils, 22:6 and 20:5, had similar effects on the incorporation of radiolabeled 20:4 in MK. Both marine oils reduced the total uptake of 20:4 in megakaryocytes but the reduction occured primarily in PE and phosphatidylserine (PS) rather than in phosphatidylcholine (PC) and phosphatidylinositol (PI). Both 20:5 and 22:6 caused a 50% reduction in the incorporation of radiolabeled 20:4 into megakaryocyte PE and PS while only a 20% reduction into PC and PI. There was a striking difference in the effect of 18:3. Even though the incubation of megakaryocytes with 18:3 reduced the uptake of 20:4, the distribution of the incorporated 20:4 in phospholipids of megakaryocytes incubated with 18:3 was similar to that in controls. Thus, 18:3 did not have a selective effect on the incorporation of 20:4 into PE or PS. Whereas megakaryocyte 20:4 metabolism was significantly affected by omega-3 fatty acids, the incubation of guinea pig or human platelets with 22:6, 20:5 or 18:3 did not result in any alteration of the incorporation of 20:4 into platelet phospholipids.20:4 may be initially incorporated into megakaryocyte PC and subsequently transfered to PE and other phospholipids. Omega 3 marine oils, 20:5 and 22:6, appear to have a selective action on the incorporation or transfer of 20:4 into PE and PS. One mechanism for these observations would be an effect of marine oils on megakaryocyte acyltransferase and/or transacylases. Omega 3 linolenic acid appears to reduce the uptake of 20:4 but does not affect the transfer of 20:4 into PE and PS since there was no selective inhibition of uptake into PE or other megakaryocyte phospholipids. The observation that marine oils did not have any effect on 20:4 metabolism in platelets indicated that omega 3 polyunsaturated fatty acids primarily affect megakaryocytes. This phenomenon may result in the production of platelets with abnormal content and compartmentalization of arachidonic acid. The localization of 20:4 in different pools in these platelets could influence the availability of esterified 20:4 for the production of thromboxanes and other eicosanoids. Another implication of the study is that omega 3 fatty acids may have a greater effect on precursor cells than on differentiated cells and tissues and influence cellular maturation.


Sign in / Sign up

Export Citation Format

Share Document