scholarly journals Lactobacillus plantarum PS128 and Other Probiotics in Children and Adolescents with Autism Spectrum Disorder: A Real-World Experience

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2036
Author(s):  
Martina Maria Mensi ◽  
Chiara Rogantini ◽  
Michele Marchesi ◽  
Renato Borgatti ◽  
Matteo Chiappedi

Autism Spectrum Disorder is a neurodevelopmental disorder. Recent data suggest that probiotics can reduce some symptoms of this disorder and Lactobacillus plantarum PS128 has been reported to be especially useful. We recruited a sample of 131 autistic children and adolescents (M:F = 122:19; age: 86.1 ± 41.1 months) and evaluated their changes after use of probiotics by mean of CGI. We found some significant improvements with very few side effects; these positive effects were more evident in younger children. Patients taking Lactobacillus plantarum PS128 had greater improvements and fewer side effects than those taking other probiotics. Our real-life data are consistent with existing literature showing a specific effect of Lactobacillus plantarum PS128 in Autism Spectrum Disorder.

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2079
Author(s):  
Gulce Ogruc Ildiz ◽  
Sevgi Bayari ◽  
Ahmet Karadag ◽  
Ersin Kaygisiz ◽  
Rui Fausto

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that begins early in life and continues lifelong with strong personal and societal implications. It affects about 1%–2% of the children population in the world. The absence of auxiliary methods that can complement the clinical evaluation of ASD increases the probability of false identification of the disorder, especially in the case of very young children. In this study, analytical models for auxiliary diagnosis of ASD in children and adolescents, based on the analysis of patients’ blood serum ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectra, were developed. The models use chemometrics (either Principal Component Analysis (PCA) or Partial Least Squares Discriminant Analysis (PLS-DA)) methods, with the infrared spectra being the X-predictor variables. The two developed models exhibit excellent classification performance for samples of ASD individuals vs. healthy controls. Interestingly, the simplest, unsupervised PCA-based model results to have a global performance identical to the more demanding, supervised (PLS-DA)-based model. The developed PCA-based model thus appears as the more economical alternative one for use in the clinical environment. Hierarchical clustering analysis performed on the full set of samples was also successful in discriminating the two groups.


2021 ◽  
Vol 38 (4) ◽  
pp. 275-281 ◽  
Author(s):  
Wan Seok Seo

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by abnormalities in social communication/interaction and restrictive, repetitive patterns of behavior. ASD is a relatively common psychiatric disorder, with a prevalence of approximately 1.7% in children. Although many children and adolescents with ASD visit the hospital for medical help for emotional and behavioral problems such as mood instability and self-harming behavior, there are also many visits for sleep disturbances such as insomnia and sleep resistance. Sleep disturbances are likely to increase fatigue and daytime sleepiness, impaired concentration, negatively impact on daytime functioning, and pose challenges in controlling anger and aggressive behavior. Sleep disturbance in children and adolescents with ASD negatively affects the quality of life, nothing to say the quality of life of their families and school members. In this review, sleep disturbances that are common in children and adolescents with ASD and adolescents are presented. The developmental and behavioral impacts of sleep disturbances in ASD were also considered. Finally, non-pharmacological and pharmacological treatments for sleep disturbances in children and adolescents with ASD and adolescents are reviewed.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Lamyaa Sadouk ◽  
Taoufiq Gadi ◽  
El Hassan Essoufi

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by persistent difficulties including repetitive patterns of behavior known as stereotypical motor movements (SMM). So far, several techniques have been implemented to track and identify SMMs. In this context, we propose a deep learning approach for SMM recognition, namely, convolutional neural networks (CNN) in time and frequency-domains. To solve the intrasubject SMM variability, we propose a robust CNN model for SMM detection within subjects, whose parameters are set according to a proper analysis of SMM signals, thereby outperforming state-of-the-art SMM classification works. And, to solve the intersubject variability, we propose a global, fast, and light-weight framework for SMM detection across subjects which combines a knowledge transfer technique with an SVM classifier, therefore resolving the “real-life” medical issue associated with the lack of supervised SMMs per testing subject in particular. We further show that applying transfer learning across domains instead of transfer learning within the same domain also generalizes to the SMM target domain, thus alleviating the problem of the lack of supervised SMMs in general.


2020 ◽  
Vol 27 (40) ◽  
pp. 6771-6786
Author(s):  
Geir Bjørklund ◽  
Nagwa Abdel Meguid ◽  
Maryam Dadar ◽  
Lyudmila Pivina ◽  
Joanna Kałużna-Czaplińska ◽  
...  

As a major neurodevelopmental disorder, Autism Spectrum Disorder (ASD) encompasses deficits in communication and repetitive and restricted interests or behaviors in childhood and adolescence. Its etiology may come from either a genetic, epigenetic, neurological, hormonal, or an environmental cause, generating pathways that often altogether play a synergistic role in the development of ASD pathogenesis. Furthermore, the metabolic origin of ASD should be important as well. A balanced diet consisting of the essential and special nutrients, alongside the recommended caloric intake, is highly recommended to promote growth and development that withstand the physiologic and behavioral challenges experienced by ASD children. In this review paper, we evaluated many studies that show a relationship between ASD and diet to develop a better understanding of the specific effects of the overall diet and the individual nutrients required for this population. This review will add a comprehensive update of knowledge in the field and shed light on the possible nutritional deficiencies, metabolic impairments (particularly in the gut microbiome), and malnutrition in individuals with ASD, which should be recognized in order to maintain the improved socio-behavioral habit and physical health.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


Sign in / Sign up

Export Citation Format

Share Document