scholarly journals Understanding the Origin of the Regioselectivity in Non-Polar [3+2] Cycloaddition Reactions through the Molecular Electron Density Theory

Organics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 19-35
Author(s):  
Luis R. Domingo ◽  
Mar Ríos Gutiérrez ◽  
Jorge Castellanos Soriano

The regioselectivity in non-polar [3+2] cycloaddition (32CA) reactions has been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311G(d,p) level. To this end, the 32CA reactions of nine simplest three-atom-components (TACs) with 2-methylpropene were selected. The electronic structure of the reagents has been characterized through the Electron Localisation Function (ELF) and the Conceptual DFT. The energy profiles of the two regioisomeric reaction paths and ELF topology of the transition state structures are studied to understand the origin of the regioselectivity in these 32CA reactions. This MEDT study permits to conclude that the least electronegative X1 end atom of these TACs controls the asynchronicity in the C−X (X=C, N, O) single bond formation, and consequently, the regioselectivity. This behaviour is a consequence of the fact that the creation of the non-bonding electron density required for the formation of the new single bonds has a lower energy demand at the least electronegative X1 atom than at the Z3 one.

Author(s):  
Luis Domingo ◽  
Mar Ríos-Gutiérrez ◽  
Jorge Castellanos Soriano

The regioselectivity in non-polar [3+2] cycloaddition (32CA) reactions has been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311G(d,p) level. To this end, the 32CA reactions of nine simplest three-atom-components (TACs) with 2-methylpropane were selected. The electronic structure of the reagents has been characterised through the Electron Localisation Function (ELF) and the Conceptual DFT. The energy profiles of the two regioisomeric reaction paths and ELF of the transition state structures are studied to understand the origin of the regioselectivity in these 32CA reactions. This MEDT study permits to conclude that the least electronegative ends X1 atom of these TACs controls the asynchronicity in the C-X (X = C,N,O) single bond formation, and consequently, the regioselectivity. This behaviour is a consequence of the fact that the creation of the non-bonding electron density required for the formation of the new CX single bonds has a lesser energetic cost at the least electronegative X1 atom than that at the Z3 one.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 274-286
Author(s):  
Mar Ríos-Gutiérrez ◽  
Luis R. Domingo ◽  
Fatemeh Ghodsi

The reactivity of a series of pairs of bent and linear three-atom-component (B-TACs and L-TACs) participating in [3 + 2] cycloaddition (32CA) reactions towards ethylene and electrophilic dicyanoethylene (DCE) have been studied within the Molecular Electron Density Theory. While the pseudodiradical structure of B-TACs changes to that of pseudoradical or carbenoid L-TACs upon dehydrogenation, zwitterionic B-TACs remain unchanged. Conceptual Density Functional Theory (CDFT) indices characterize five of the nine TACs as strong nucleophiles participating in polar reactions towards electrophilic ethylenes. The activation energies of the 32CA reactions with electrophilic DCE range from 0.5 to 22.0 kcal·mol−1, being between 4.3 and 9.1 kcal·mol−1 lower than those with ethylene. In general, B-TACs are more reactive than their L-TAC counterparts. A change in the regioselectivity is found in these polar 32CA reactions; in general, while B-TACs are meta regioselective, L-TACs are ortho regioselective. The geometrical parameters of the transition state structures suggest that the formation of the single bond involving the most electrophilic carbon of DCE is more advanced. A change in the asynchronicity in the reactions involving B-TACs and L-TACs is also found.


Organics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 36-48
Author(s):  
Agnieszka Kącka-Zych

The structure and the contribution of the bis(2-chloroethyl) 2-nitro 1a and 2-bromo-2-nitroethenylphosphonates 1b with anthracene 2 in the Diels–Alder (DA) reactions have been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP functional together with 6-31G(d), 6-31+G(d) and 6-31+G(d,p) basic sets. Analysis of the Conceptual Density Functional Theory (CDFT) reactivity indices indicates that 1a and 1b can be classified as a strong electrophile and marginal nucleophile, while 2 is classified as a strong electrophile and strong nucleophile. The studied DA reactions take place through a one-step mechanism. A Bonding Evolution Theory (BET) of the one path associated with the DA reaction of 1a with 2 indicates that it is associated with non-concerted two-stage one-step mechanism. BET analysis shows that the first C2-C3 single bond is formed in Phase VI, while the second C1-C6 single bond is formed in the Phase VIII. The formation of both single bonds occurs through the merging of two C2 and C3, C1 and C6 pseudoradical centers, respectively.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4159
Author(s):  
Luis R. Domingo ◽  
Fatemeh Ghodsi ◽  
Mar Ríos-Gutiérrez

The reaction of diphenyl nitrilimine (NI) with methyl 1-methyl-allenoate yielding a spirobipyrazoline has been studied within molecular electron density theory (MEDT) at the MPWB1K/6-311G(d) computational level in dichloromethane. This reaction is a domino process that comprises two consecutive 32CA reactions with the formation of a pyrazoline intermediate. Analysis of the relative Gibbs free energies indicates that both 32CA reactions are highly regioselective, the first one being also completely chemoselective, in agreement with the experimental outcomes. The geometries of the TSs indicate that they are associated to asynchronous bond formation processes in which the shorter distance involves the C1 carbon of diphenyl NI. Despite the zwitterionic structure of diphenyl NI, the appearance of a pseudoradical structure at the beginning of the reaction path, with a very low energy cost, suggests that the 32CA reaction between diphenyl NI, a strong nucleophile, and the allenoate, a moderate electrophile, should be mechanistically considered on the borderline between pmr-type and cb-type 32CA reactions, somewhat closer to the latter.


Author(s):  
Mar Ríos-Gutiérrez ◽  
Luis R. Domingo ◽  
Fatemeh Ghodsi

The 32CA reactions of a series of pairs of bent three-atom-components (B-TACs) and linear TACs (L-TACs) towards electrophilic dicyanoethylene (DCE) have been studied within the Molecular Electron Density Theory in order to understand their different reactivity. ELF analysis indicates that while pseudodiradical B-TACs change their electronic structure to pseudoradical or carbenoid L-TACs upon dehydrogenation, zwitterionic B-TACs experience no remarkable change. Analysis of the CDFT indices indicates that five of the nine studied TACs have a strong nucleophilic character, thus participating in polar reactions towards electrophilic ethylenes. The activation energies of the 32CA reactions of the nine TACs towards electrophilic DCE range from 0.6 to 22.0 kcal·mol-1, which are by between 2.0 and 10.1 kcal·mol-1 lower than those involved in the non-polar 32CA reactions with ethylene. In general, B-TACs are more reactive than their L-TAC counterparts. A change of the regioselectivity is found in these polar 32CA reactions; in general, while B-TACs are meta regioselective, L-TACs are ortho regioselective. Analysis of the geometrical parameters indicates that at all TSs, the formation of the single bond involving the most electrophilic C4 carbon of DCE is more advanced than that involving the C5 one. A change of the asynchronicity in the reactions involving B-TACs and L-TACs is also found.


2021 ◽  
Author(s):  
Agnieszka Kącka-Zych ◽  
Radomir Jasinski

Conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives has been explored using Density Functional Theory (DFT) method within the context of the Molecular Electron Density Theory (MEDT) at the B97XD(PCM)/6-311G(d,p)...


2017 ◽  
Vol 15 (7) ◽  
pp. 1618-1627 ◽  
Author(s):  
Mar Ríos-Gutiérrez ◽  
Andrea Darù ◽  
Tomás Tejero ◽  
Luis R. Domingo ◽  
Pedro Merino

The zw-type 32CA reactions of nitrones with ketenes are controlled by the nucleophilic character of the nitrone and the electrophilic character of the ketene. They are chemo- and regio-selective and the use of electrophilic ketenes changes the mechanism from one-step to two-step.


2021 ◽  
Author(s):  
Luis R. Domingo ◽  
Mar Ríos-Gutiérrez ◽  
María José Aurell

The origin of the meta regioselectivity in electrophilic aromatic substitution (EAS) reactions of deactivated benzene derivatives is herein analysed through Molecular Electron Density Theory (MEDT). To this end, the EAS...


Sign in / Sign up

Export Citation Format

Share Document