scholarly journals Phytohormone Production Profiles in Trichoderma Species and Their Relationship to Wheat Plant Responses to Water Stress

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 991
Author(s):  
María Illescas ◽  
Alberto Pedrero-Méndez ◽  
Marcieli Pitorini-Bovolini ◽  
Rosa Hermosa ◽  
Enrique Monte

The production of eight phytohormones by Trichoderma species is described, as well as the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) activity, which diverts the ethylene biosynthetic pathway in plants. The use of the Trichoderma strains T. virens T49, T. longibrachiatum T68, T. spirale T75 and T. harzianum T115 served to demonstrate the diverse production of the phytohormones gibberellins (GA) GA1 and GA4, abscisic acid (ABA), salicylic acid (SA), auxin (indole-3-acetic acid: IAA) and the cytokinins (CK) dihydrozeatin (DHZ), isopenteniladenine (iP) and trans-zeatin (tZ) in this genus. Such production is dependent on strain and/or culture medium. These four strains showed different degrees of wheat root colonization. Fresh and dry weights, conductance, H2O2 content and antioxidant activities such as superoxide dismutase, peroxidase and catalase were analyzed, under optimal irrigation and water stress conditions, on 30-days-old wheat plants treated with four-day-old Trichoderma cultures, obtained from potato dextrose broth (PDB) and PDB-tryptophan (Trp). The application of Trichoderma PDB cultures to wheat plants could be linked to the plants’ ability to adapt the antioxidant machinery and to tolerate water stress. Plants treated with PDB cultures of T49 and T115 had the significantly highest weights under water stress. Compared to controls, treatments with strains T68 and T75, with constrained GA1 and GA4 production, resulted in smaller plants regardless of fungal growth medium and irrigation regime.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Luo ◽  
Pei Tian

In the present study, two Epichloë sinensis endophyte strains isolated from different Festuca sinensis ecotypes were inoculated on potato dextrose agar (PDA) and potato dextrose broth (PDB) media with or without (control) exogenous additives. After 4weeks of growth, the growth (colony diameter, hyphal diameter, and mycelial biomass) and other characteristics (pH and antioxidant capacity of culture filtrate, mycelial ion contents, and hormone contents) were measured. The results showed that the culture conditions had significant effects (p<0.05) on the hyphal diameter, mycelial biomass, and hormone content of the two strains. The mycelial biomass of the two strains in PDB was significantly higher (p<0.05) than that on PDA. Except for strain 1 with indole-3-acetic acid (IAA) treatment and strain 84F with control and VB1 treatments, the hyphal diameter of the two strains in PDB under the other treatments was significantly higher (p<0.05) than that on PDA. In most cases, the IAA, cytokinins (CTK), abscisic acid (ABA), and gibberlic acid (GA) contents in the mycelia on PDA of the two strains were significantly higher (p<0.05) than those in PDB. The two E. sinensis strains exhibited significantly different performances (p<0.05) under the five treatments. The indices, including colony diameter, mycelial biomass, scavenging ability of superoxide anion radicals and hydroxyl radicals, pH of culture filtrate, ion contents, hyphal diameter, and IAA, CTK, GA, and ABA contents were significantly different (p<0.05) between the two strains, although the performance was inconsistent. Exogenous additives had significant effects (p<0.05) on the performance of the two E. sinensis strains. Indole-3-acetic acid and VB1 treatments significantly promoted (p<0.05) the growth of the two strains on both PDA and PDB. Indole-3-acetic acid treatment also significantly increased the hyphal diameters of the two strains in PDB (p<0.05). Indole-3-acetic acid and VB1 treatments significantly reduced (p<0.05) the antioxidant ability of these two strains in PDB. NaCl and ZnCl2 treatments had significant inhibitory effects (p<0.05) on fungal growth and promotion effects on the antioxidant ability of the two strains. The treatments also had significant effects (p<0.05) on hyphal diameters and ion and hormone contents, although the effects varied with different indices.



1994 ◽  
Vol 21 (2) ◽  
pp. 130-134 ◽  
Author(s):  
S. M. Basha ◽  
R. J. Cole ◽  
S. K. Pancholy

Abstract An in vitro seed culture system was established to grow peanut seed of different maturities viz. white, yellow, orange, brown and black, using a modified Murashige and Skoog medium. Under this system peanut seed of yellow, orange, brown and black maturity categories grew to maturity as measured by increase in their size and germinability. In vitro cultured seeds produced significant amounts of phytoalexins and were contaminated with aflatoxins following their inoculation with Aspergillus spp. while the noninoculated sterile controls did not produce any phytoalexins. Exposure of seed cultures to water stress using various concentrations of mannitol (0 to 1 M) and polyethylene glycol 8000 (0-30% w/v) caused a significant decrease in their phytoalexin producing ability, and enhanced fungal growth compared to the nonstressed controls. The seeds that were stressed with mannitol and subsequently inoculated with A. flavus and A. parasiticus showed a significant increase in the aflatoxin contamination of stressed seed compared to the unstressed control. This would indicate that in vitro grown seeds responded to water stress similar to the field grown peanuts by loosing their ability to produce phytoalexins and increased susceptibility to aflatoxin contamination. Hence, this system has a potential application in evaluating peanut genotypes for aflatoxin resistance under water stress.



2015 ◽  
Vol 81 (18) ◽  
pp. 6129-6144 ◽  
Author(s):  
Abdulsamie Hanano ◽  
Ibrahem Almousally ◽  
Mouhnad Shaban ◽  
Elizabeth Blee

ABSTRACTCaleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein inAspergillus flavusthat is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway,aflRandaflD, were downregulated in the strains in whichA. flavusPXG(AfPXG) was silenced, leading to reduced aflatoxin B1 productionin vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in whichAfPXGwas silenced.PXG-deficientA. flavusstrains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jalel Mahouachi ◽  
María F. López-Climent ◽  
Aurelio Gómez-Cadenas

The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminatacv. “Grand Nain”) subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.



2022 ◽  
Vol 23 (2) ◽  
pp. 891
Author(s):  
Wenjie Yue ◽  
Haobin Zhang ◽  
Xuming Sun ◽  
Ning Su ◽  
Qi Zhao ◽  
...  

Autophagy is an indispensable biological process and plays crucial roles in plant growth and plant responses to both biotic and abiotic stresses. This study systematically identified autophagy-related proteins (ATGs) in wheat and its diploid and tetraploid progenitors and investigated their genomic organization, structure characteristics, expression patterns, genetic variation, and regulation network. We identified a total of 77, 51, 29, and 30 ATGs in wheat, wild emmer, T. urartu and A. tauschii, respectively, and grouped them into 19 subfamilies. We found that these autophagy-related genes (ATGs) suffered various degrees of selection during the wheat’s domestication and breeding processes. The genetic variations in the promoter region of Ta2A_ATG8a were associated with differences in seed size, which might be artificially selected for during the domestication process of tetraploid wheat. Overexpression of TaVAMP727 improved the cold, drought, and salt stresses resistance of the transgenic Arabidopsis and wheat. It also promoted wheat heading by regulating the expression of most ATGs. Our findings demonstrate how ATGs regulate wheat plant development and improve abiotic stress resistance. The results presented here provide the basis for wheat breeding programs for selecting varieties of higher yield which are capable of growing in colder, drier, and saltier areas.



2017 ◽  
Vol 9 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Khirood DOLEY ◽  
Mayura DUDHANE ◽  
Mahesh BORDE

Sclerotium rolfsii (Sacc.) is the causal agent of stem-rot in groundnut (Arachis hypogaea L.)crop. With the increase in demand for the groundnut, control of stem-rot efficiently by microbial strains is fast becoming inevitable as the conventional system of chemicals is degrading our ecosystem. This investigation here emphasizes on inoculation of arbuscular mycorrhizal fungi (AMF) and Trichoderma species for growth achievement and disease control. The present investigation showed that these microbial strains were found to be worth applying as they stimulated growth and decreased harmful effects of S. rolfsii (cv. ‘Western-51’). The increased biochemical parameters and antioxidant activities also indicated their defence related activities in groundnut plants. In spite of positive attributes meted out by these microbial strains towards groundnut crop, the interaction among AM fungi and Trichoderma species seemed to be less co-operative between each other which were noted when mycorrhizal dependency and percent root colonization were observed. However, in summary more practical application of low-input AM fungi along with Trichoderma species may be needed for the advancement of modern agricultural systems.



2020 ◽  
Author(s):  
Sabrina Sarrocco ◽  
Pilar Esteban ◽  
Isabel Vicente ◽  
Rodolfo Bernardi ◽  
Tracy Plainchamp ◽  
...  

Trichoderma gamsii T6085 has been investigated for many years as a beneficial isolate for use in the biocontrol of Fusarium head blight (FHB) of wheat caused primarily by Fusarium graminearum. Previous work focused on application of T6085 to wheat spikes at anthesis, whereas application to soil before and/or at sowing has received limited attention. In the present study, the competitive ability of T6085 on plant residues against F. graminearum was investigated. Results showed a significant reduction of wheat straw colonization by the pathogen and of the development of perithecia, not only when T6085 was applied alone but also in the presence of a Fusarium oxysporum isolate (7121), well known as a natural competitor on wheat plant residues. T6085 was able to endophytically colonize wheat roots, resulting in internal colonization of the radical cortex area, without reaching the vascular system, as confirmed by confocal microscopy. This intimate interaction with the plant resulted in a significant increase of the expression of the plant defense-related genes PAL1 and PR1. Taken together, competitive ability, endophytic behavior, and host resistance induction represent three important traits that can be of great use in the application of T6085 against FHB, not only on spikes at anthesis but potentially also in soil before and/or at sowing.



2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Mahmoud W. Yaish

In this report, a draft of theEnterobacter asburiaestrain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress.



Sign in / Sign up

Export Citation Format

Share Document