scholarly journals Histochemical and Microscopic Studies Predict that Grapevine Genotype “Ju mei gui” is Highly Resistant against Botrytis cinerea

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 253
Author(s):  
Mati Ur Rahman ◽  
Qingqing Ma ◽  
Bilal Ahmad ◽  
Muhammad Hanif ◽  
Youlin Zhang

The necrotrophic fungus Botrytis cinerea causes devastating pre- and post-harvest yield losses in grapevine (Vitis vinifera L.). Although B. cinerea has been well-studied in different plant species, there is limited information related to the resistance and susceptibility mechanisms of Vitis genotypes against B. cinerea infection. In the present study, leaves and berries of twenty four grape genotypes were evaluated against B. cinerea infection. According to the results, one genotype (Ju mei gui) was highly resistant (HR), one genotype (Kyoho) was resistant (R), eight genotypes were susceptible (S), and fourteen genotypes were highly susceptible (HS) against infection of B. cinerea in leaves. Whereas in the case of B. cinerea infection in grape berry, three genotypes were found to be highly resistant, three resistant, eleven genotypes susceptible, and seven were highly susceptible. To further explore the mechanism of disease resistance in grapevine, we evaluated “Ju mei gui” and “Summer black” in terms of B. cinerea progression, reactive oxygen species reactions, jasmonic acid contents, and the activities of antioxidant enzymes in leaf and fruit. We surmise that the resistance of “Ju mei gui” is due to seized fungal growth, minor reactive oxygen species (ROS) production, elevated antioxidant enzyme activity, and more jasmonic acid (JA) contents. This study provides insights into the resistance and susceptibility mechanism of Vitis genotypes against B. cinerea. This will help for the selection of appropriate germplasm to explore the molecular basis of disease resistance mechanisms in grapevine.

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 5 ◽  
Author(s):  
Mati Rahman ◽  
Muhammad Hanif ◽  
Ran Wan ◽  
Xiaoqing Hou ◽  
Bilal Ahmad ◽  
...  

Botrytis cinerea is a necrotrophic fungal phytopathogen with devastating effects on many Vitis genotypes. Here, a screening of 81 Vitis genotypes for leaf resistance to B. cinerea revealed two highly resistant (HR), twelve resistant (R), twenty-five susceptible (S) and forty-two highly susceptible (HS) genotypes. We focused on the HR genotype, ‘Zi Qiu’ (Vitis davidii), and the HS genotype ‘Riesling’ (V. vinifera), to elucidate mechanisms of host resistance and susceptibility against B. cinerea, using detached leaf assays. These involved a comparison of fungal growth, reactive oxygen species (ROS) responses, jasmonic acid (JA) levels, and changes in the anti-oxidative system between the two genotypes after inoculation with B. cinerea. Our results indicated that the high-level resistance of ‘Zi Qiu’ can be attributed to insignificant fungal development, low ROS production, timely elevation of anti-oxidative functions, and high JA levels. Moreover, severe fungal infection of ‘Riesling’ and sustained ROS production coincided with relatively unchanged anti-oxidative activity, as well as low JA levels. This study provides insights into B. cinerea infection in grape, which can be valuable for breeders by providing information for selecting suitable germplasm with enhanced disease resistance.


2009 ◽  
Vol 22 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Shuta Asai ◽  
Hirofumi Yoshioka

Nitric oxide (NO) is an essential regulatory molecule in plant immunity in synergy with reactive oxygen species (ROS). However, little is known about the role of NO in disease resistance to necrotrophic pathogens. NO and oxidative bursts were induced during necrotrophic fungal pathogen Botrytis cinerea and Nicotiana benthamiana compatible interaction. Histochemical analyses showed that both NO and ROS were produced in adjacent cells of invaded areas in N. benthamiana leaves. Activation of salicylic acid–induced protein kinase, which regulates the radical burst, and several defense-related genes were induced after inoculation of B. cinerea. Loss-of-function analyses using inhibitors and virus-induced gene silencing were done to investigate the role of the radical burst in pathogenesis. We showed that NO plays a pivotal role in basal defense against B. cinerea and PR-1 gene expression in N. benthamiana. By contrast, ROS function has a negative role in resistance or has a positive role in expansion of disease lesions during B. cinerea–N. benthamiana interaction.


2011 ◽  
Vol 156 (3) ◽  
pp. 1364-1374 ◽  
Author(s):  
Lucinda Denness ◽  
Joseph Francis McKenna ◽  
Cecile Segonzac ◽  
Alexandra Wormit ◽  
Priya Madhou ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1174
Author(s):  
Henry Christopher Janse van Rensburg ◽  
Wim Van den Ende

The stress-inducible non-proteinogenic amino acid γ-aminobutyric acid (GABA) is known to alleviate several (a)biotic stresses in plants. GABA forms an important link between carbon and nitrogen metabolism and has been proposed as a signalling molecule in plants. Here, we set out to establish GABA as a priming compound against Botrytis cinerea in Arabidopsis thaliana and how metabolism and reactive oxygen species (ROS) are influenced after GABA treatment and infection. We show that GABA already primes disease resistance at low concentrations (100 µM), comparable to the well-characterized priming agent β-Aminobutyric acid (BABA). Treatment with GABA reduced ROS burst in response to flg22 (bacterial peptide derived from flagellum) and oligogalacturonides (OGs). Plants treated with GABA showed reduced H2O2 accumulation after infection due to increased activity of catalase and guaiacol peroxidase. Contrary to 100 µM GABA treatments, 1 mM exogenous GABA induced endogenous GABA before and after infection. Strikingly, 1 mM GABA promoted total and active nitrate reductase activity whereas 100 µM inhibited active nitrate reductase. Sucrose accumulated after GABA treatment, whereas glucose and fructose only accumulated in treated plants after infection. We propose that extracellular GABA signalling and endogenous metabolism can be separated at low exogenous concentrations.


Sign in / Sign up

Export Citation Format

Share Document