scholarly journals Screening Vitis Genotypes for Responses to Botrytis cinerea and Evaluation of Antioxidant Enzymes, Reactive Oxygen Species and Jasmonic Acid in Resistant and Susceptible Hosts

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 5 ◽  
Author(s):  
Mati Rahman ◽  
Muhammad Hanif ◽  
Ran Wan ◽  
Xiaoqing Hou ◽  
Bilal Ahmad ◽  
...  

Botrytis cinerea is a necrotrophic fungal phytopathogen with devastating effects on many Vitis genotypes. Here, a screening of 81 Vitis genotypes for leaf resistance to B. cinerea revealed two highly resistant (HR), twelve resistant (R), twenty-five susceptible (S) and forty-two highly susceptible (HS) genotypes. We focused on the HR genotype, ‘Zi Qiu’ (Vitis davidii), and the HS genotype ‘Riesling’ (V. vinifera), to elucidate mechanisms of host resistance and susceptibility against B. cinerea, using detached leaf assays. These involved a comparison of fungal growth, reactive oxygen species (ROS) responses, jasmonic acid (JA) levels, and changes in the anti-oxidative system between the two genotypes after inoculation with B. cinerea. Our results indicated that the high-level resistance of ‘Zi Qiu’ can be attributed to insignificant fungal development, low ROS production, timely elevation of anti-oxidative functions, and high JA levels. Moreover, severe fungal infection of ‘Riesling’ and sustained ROS production coincided with relatively unchanged anti-oxidative activity, as well as low JA levels. This study provides insights into B. cinerea infection in grape, which can be valuable for breeders by providing information for selecting suitable germplasm with enhanced disease resistance.

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 253
Author(s):  
Mati Ur Rahman ◽  
Qingqing Ma ◽  
Bilal Ahmad ◽  
Muhammad Hanif ◽  
Youlin Zhang

The necrotrophic fungus Botrytis cinerea causes devastating pre- and post-harvest yield losses in grapevine (Vitis vinifera L.). Although B. cinerea has been well-studied in different plant species, there is limited information related to the resistance and susceptibility mechanisms of Vitis genotypes against B. cinerea infection. In the present study, leaves and berries of twenty four grape genotypes were evaluated against B. cinerea infection. According to the results, one genotype (Ju mei gui) was highly resistant (HR), one genotype (Kyoho) was resistant (R), eight genotypes were susceptible (S), and fourteen genotypes were highly susceptible (HS) against infection of B. cinerea in leaves. Whereas in the case of B. cinerea infection in grape berry, three genotypes were found to be highly resistant, three resistant, eleven genotypes susceptible, and seven were highly susceptible. To further explore the mechanism of disease resistance in grapevine, we evaluated “Ju mei gui” and “Summer black” in terms of B. cinerea progression, reactive oxygen species reactions, jasmonic acid contents, and the activities of antioxidant enzymes in leaf and fruit. We surmise that the resistance of “Ju mei gui” is due to seized fungal growth, minor reactive oxygen species (ROS) production, elevated antioxidant enzyme activity, and more jasmonic acid (JA) contents. This study provides insights into the resistance and susceptibility mechanism of Vitis genotypes against B. cinerea. This will help for the selection of appropriate germplasm to explore the molecular basis of disease resistance mechanisms in grapevine.


2019 ◽  
Vol 54 (4) ◽  
pp. 632-640 ◽  
Author(s):  
Daekyung Kim ◽  
Li Wencheng ◽  
Yukihiko Matsuyama ◽  
Kichul Cho ◽  
Yasuhiro Yamasaki ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Esteban Vasquez-Montaño ◽  
Gustavo Hoppe ◽  
Andrea Vega ◽  
Consuelo Olivares-Yañez ◽  
Paulo Canessa

ABSTRACT The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interaction, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea obtains iron, an essential micronutrient, during infection is unknown. We set out to determine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium production, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Interestingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS production, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant. IMPORTANCE The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between $10 billion and $100 billion worldwide, under both pre- and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hypervirulence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction.


2021 ◽  
Vol 22 (23) ◽  
pp. 12899
Author(s):  
Yutong Jin ◽  
Brian Dixon ◽  
Lyndon Jones ◽  
Maud Gorbet

A large number of polymorphonuclear neutrophils (PMNs) invade the ocular surface during prolonged eye closure (sleep); these leukocytes are commonly referred as tear PMNs. PMNs contribute to homeostasis and possess an arsenal of inflammatory mediators to protect against pathogens and foreign materials. This study examined the ability of tear PMNs to generate reactive oxygen species (ROS), an essential killing mechanism for PMNs which can lead to oxidative stress and imbalance. Cells were collected after sleep from healthy participants using a gentle eye wash. ROS production in stimulated (phorbol-12-myristate-13-acetate (PMA), lipopolysaccharides (LPS) or N-Formylmethionyl-leucyl-phenylalanine (fMLP)) and unstimulated tear PMNs was measured using luminol-enhanced chemiluminescence for 60 min. A high level of constitutive/spontaneous ROS production was observed in tear PMNs in the absence of any stimulus. While tear PMNs were able to produce ROS in response to PMA, they failed to appropriately respond to LPS and fMLP, although fMLP-stimulated tear PMNs generated ROS extracellularly in the first three minutes. Higher ROS generation was observed in isolated tear PMNs which may be due to priming from the magnetic bead cell separation system. The differential responses of tear PMNs in ROS generation provide further evidence of their potential inflammatory roles in ocular complications involving oxidative stress.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Jaenen ◽  
S. Fraguas ◽  
K. Bijnens ◽  
M. Heleven ◽  
T. Artois ◽  
...  

AbstractDespite extensive research on molecular pathways controlling the process of regeneration in model organisms, little is known about the actual initiation signals necessary to induce regeneration. Recently, the activation of ERK signaling has been shown to be required to initiate regeneration in planarians. However, how ERK signaling is activated remains unknown. Reactive Oxygen Species (ROS) are well-known early signals necessary for regeneration in several models, including planarians. Still, the probable interplay between ROS and MAPK/ERK has not yet been described. Here, by interfering with major mediators (ROS, EGFR and MAPK/ERK), we were able to identify wound-induced ROS, and specifically H2O2, as upstream cues in the activation of regeneration. Our data demonstrate new relationships between regeneration-related ROS production and MAPK/ERK activation at the earliest regeneration stages, as well as the involvement of the EGFR-signaling pathway. Our results suggest that (1) ROS and/or H2O2 have the potential to rescue regeneration after MEK-inhibition, either by H2O2-treatment or light therapy, (2) ROS and/or H2O2 are required for the activation of MAPK/ERK signaling pathway, (3) the EGFR pathway can mediate ROS production and the activation of MAPK/ERK during planarian regeneration.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2021 ◽  
Vol 22 (11) ◽  
pp. 6044
Author(s):  
Xiaoling Li ◽  
Gregor Römer ◽  
Raphaela P. Kerindongo ◽  
Jeroen Hermanides ◽  
Martin Albrecht ◽  
...  

SGLT-2i’s exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i’s empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i’s (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i’s improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i’s might be partially mediated by inhibition of NHE1 and NOXs.


Sign in / Sign up

Export Citation Format

Share Document