scholarly journals The Neuropathic Itch Caused by Pseudorabies Virus

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 254 ◽  
Author(s):  
Kathlyn Laval ◽  
Lynn W. Enquist

Pseudorabies virus (PRV) is an alphaherpesvirus related to varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1). PRV is the causative agent of Aujeskzy’s disease in swine. PRV infects mucosal epithelium and the peripheral nervous system (PNS) of its host where it can establish a quiescent, latent infection. While the natural host of PRV is the swine, a broad spectrum of mammals, including rodents, cats, dogs, and cattle can be infected. Since the nineteenth century, PRV infection is known to cause a severe acute neuropathy, the so called “mad itch” in non-natural hosts, but surprisingly not in swine. In the past, most scientific efforts have been directed to eradicating PRV from pig farms by the use of effective marker vaccines, but little attention has been given to the processes leading to the mad itch. The main objective of this review is to provide state-of-the-art information on the mechanisms governing PRV-induced neuropathic itch in non-natural hosts. We highlight similarities and key differences in the pathogenesis of PRV infections between non-natural hosts and pigs that might explain their distinctive clinical outcomes. Current knowledge on the neurobiology and possible explanations for the unstoppable itch experienced by PRV-infected animals is also reviewed. We summarize recent findings concerning PRV-induced neuroinflammatory responses in mice and address the relevance of this animal model to study other alphaherpesvirus-induced neuropathies, such as those observed for VZV infection.

2006 ◽  
Vol 80 (21) ◽  
pp. 10871-10873 ◽  
Author(s):  
Alla Brukman ◽  
L. W. Enquist

ABSTRACT Pseudorabies virus (PRV), an alphaherpesvirus related to herpes simplex virus type 1 and varicella-zoster virus, infects a broad host range of mammals. A striking characteristic of PRV infection is the different symptoms and outcomes of infection in natural and nonnatural hosts. Adult pigs, the natural hosts of PRV, survive infection with only mild respiratory symptoms, while nonnatural hosts, including rodents and cattle, invariably die after exhibiting neurological symptoms. Here, we show that the PRV EP0 protein is necessary to overcome an interferon-mediated antiviral response in primary cells from the natural host of PRV but is not necessary in nonnatural-host cells.


2009 ◽  
Vol 83 (14) ◽  
pp. 6978-6986 ◽  
Author(s):  
M. G. Lyman ◽  
C. D. Kemp ◽  
M. P. Taylor ◽  
L. W. Enquist

ABSTRACT Pseudorabies virus (PRV) Us9 is a small, tail-anchored (TA) membrane protein that is essential for axonal sorting of viral structural proteins and is highly conserved among other members of the alphaherpesvirus subfamily. We cloned the Us9 homologs from two human pathogens, varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV-1), as well as two veterinary pathogens, equine herpesvirus type 1 (EHV-1) and bovine herpesvirus type 1 (BHV-1), and fused them to enhanced green fluorescent protein to examine their subcellular localization and membrane topology. Akin to PRV Us9, all of the Us9 homologs localized to the trans-Golgi network and had a type II membrane topology (typical of TA proteins). Furthermore, we examined whether any of the Us9 homologs could compensate for the loss of PRV Us9 in anterograde, neuron-to-cell spread of infection in a compartmented chamber system. EHV-1 and BHV-1 Us9 were able to fully compensate for the loss of PRV Us9, whereas VZV and HSV-1 Us9 proteins were unable to functionally replace PRV Us9 when they were expressed in a PRV background.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kathlyn Laval ◽  
Katrien C. K. Poelaert ◽  
Jolien Van Cleemput ◽  
Jing Zhao ◽  
Annelies P. Vandekerckhove ◽  
...  

Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus related to pseudorabies virus (PRV) and varicella-zoster virus (VZV). This virus is one of the major pathogens affecting horses worldwide. EHV-1 is responsible for respiratory disorders, abortion, neonatal foal death and equine herpes myeloencephalopathy (EHM). Over the last decade, EHV-1 has received growing attention due to the frequent outbreaks of abortions and/or EHM causing serious economical losses to the horse industry worldwide. To date, there are no effective antiviral drugs and current vaccines do not provide full protection against EHV-1-associated diseases. Therefore, there is an urgent need to gain a better understanding of the pathogenesis of EHV-1 in order to develop effective therapies. The main objective of this review is to provide state-of-the-art information on the pathogenesis of EHV-1. We also highlight recent findings on EHV-1 immune evasive strategies at the level of the upper respiratory tract, blood circulation and endothelium of target organs allowing the virus to disseminate undetected in the host. Finally, we discuss novel approaches for drug development based on our current knowledge of the pathogenesis of EHV-1.


Virology ◽  
1995 ◽  
Vol 209 (1) ◽  
pp. 281-283 ◽  
Author(s):  
Hiroyuki Moriuchi ◽  
Masako Moriuchi ◽  
Hansi Dean ◽  
Andrew K. Cheung ◽  
Jeffrey I. Cohen

2021 ◽  
Vol 9 (2) ◽  
pp. 292
Author(s):  
Miroslava Šudomová ◽  
Sherif T. S. Hassan

Herpesviruses are DNA viruses that infect humans and animals with the ability to induce latent and lytic infections in their hosts, causing critical health complications. The enrolment of nutraceutical anti-herpesvirus drugs in clinical investigations with promising levels of reduced resistance, free or minimal cellular toxicity, and diverse mechanisms of action might be an effective way to defeat challenges that hurdle the progress of anti-herpesvirus drug development, including the problems with drug resistance and recurrent infections. Therefore, in this review, we aim to hunt down all investigations that feature the curative properties of curcumin, a principal bioactive phenolic compound of the spice turmeric, in regard to various human and animal herpesvirus infections and inflammation connected with these diseases. Curcumin was explored with potent antiherpetic actions against herpes simplex virus type 1 and type 2, human cytomegalovirus, Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus, bovine herpesvirus 1, and pseudorabies virus. The mechanisms and pathways by which curcumin inhibits anti-herpesvirus activities by targeting multiple steps in herpesvirus life/infectious cycle are emphasized. Improved strategies to overcome bioavailability challenges that limit its use in clinical practice, along with approaches and new directions to enhance the anti-herpesvirus efficacy of this compound, are also reviewed. According to the reviewed studies, this paper presents curcumin as a promising natural drug for the prevention and treatment of herpesvirus infections and their associated inflammatory diseases.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22527 ◽  
Author(s):  
Peter Norberg ◽  
Shaun Tyler ◽  
Alberto Severini ◽  
Rich Whitley ◽  
Jan-Åke Liljeqvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document