scholarly journals Genotype-Specific Antioxidant Responses and Assessment of Resistance Against Sclerotinia sclerotiorum Causing Sclerotinia Rot in Indian Mustard

Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 892
Author(s):  
Manjeet Singh ◽  
Ram Avtar ◽  
Ajay Pal ◽  
Rakesh Punia ◽  
Vivek K. Singh ◽  
...  

Productivity of Indian mustard, an important oilseed crop of India, is affected by several pathogens. Among them, the hemibiotroph Sclerotinia sclerotiorum, which causes sclerotinia rot disease, is the most devastating fungal pathogen causing up to 90% yield losses. The availability of host resistance is the only efficient approach to control and understand the host–pathogen interaction. Therefore, the present investigation was carried out using six Indian mustard genotypes with contrasting behavior towards sclerotinia rot to study the antioxidant resistance mechanism against S. sclerotiorum. The plants at post-flowering stage were inoculated with five-day-old pure culture of S. sclerotiorum using artificial stem inoculation method. Disease evaluation revealed significant genotypic differences for mean lesion length among the tested genotypes, where genotype DRMR 2035 was found highly resistant, while genotypes RH 1569 and RH 1633 were found highly susceptible. The resistant genotypes had more phenolics and higher activities of peroxidase, catalase and polyphenol oxidase which provide them more efficient and strong antioxidant systems as compared with susceptible genotypes. Studies of antioxidative mechanisms validate the results of disease responses.

Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2884-2892 ◽  
Author(s):  
Maria I. Purnamasari ◽  
William Erskine ◽  
Janine S. Croser ◽  
Ming Pei You ◽  
Martin J. Barbetti

Sclerotinia sclerotiorum and Leptosphaeria maculans are two of the most important pathogens of many cruciferous crops. The reaction of 30 genotypes of Camelina sativa (false flax) was determined against both pathogens. C. sativa genotypes were inoculated at seedling and adult stages with two pathotypes of S. sclerotiorum, highly virulent MBRS-1 and less virulent WW-1. There were significant differences (P < 0.001) among genotypes, between pathotypes, and a significant interaction between genotypes and pathotypes in relation to percent cotyledon disease index (% CDI) and stem lesion length. Genotypes 370 (% CDI 20.5, stem lesion length 1.8 cm) and 253 (% CDI 24.8, stem lesion length 1.4 cm) not only consistently exhibited cotyledon and stem resistance, in contrast to susceptible genotype 2305 (% CDI 37.7, stem lesion length 7.2 cm), but their resistance was independent to S. sclerotiorum pathotype. A F5-recombinant inbred line population was developed from genotypes 370 × 2305 and responses characterized. Low broad-sense heritability indicated a complex pattern of inheritance of resistance to S. sclerotiorum. Six isolates of L. maculans, covering combinations of five different avirulent loci (i.e., five different races), were tested on C. sativa cotyledons across two experiments. There was a high level of resistance, with % CDI < 17, and including development of a hypersensitive reaction. This is the first report of variable reaction of C. sativa to different races of L. maculans and the first demonstrating comparative reactions of C. sativa to S. sclerotiorum and L. maculans. This study not only provides new understanding of these comparative resistances in C. sativa, but highlights their potential as new sources of resistance, both for crucifer disease-resistance breeding in general and to enable broader adoption of C. sativa as a more sustainable oilseed crop in its own right.


2020 ◽  
Vol 8 (4) ◽  
pp. 881-885
Author(s):  
Vinod Kumar Bairwa ◽  
Shailesh Godika ◽  
Jitendra Sharma ◽  
Rohit Kumar Nayak ◽  
Nitisha Gahlot ◽  
...  

2015 ◽  
Vol 43 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Pankaj Sharma ◽  
P. D. Meena ◽  
Amrender Kumar ◽  
Vinod Kumar ◽  
D. Singh

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1297
Author(s):  
Chitralekha Shyam ◽  
Manoj Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Ravindra Solanki ◽  
...  

Brassica junceais a crucial cultivated mustard species and principal oilseed crop of India and Madhya Pradesh, grown for diverse vegetables, condiments, and oilseeds. Somaclonal variation was explored as a probable source of additional variability for the manipulation of fatty acids, especially low erucic acid contents that may be valuable for this commercially important plant species. The plantlets regenerated from tissue cultures (R0), their R1 generation and respective parental lines were compared for morpho-physiological traits and fatty acid profile for the probable existence of somaclonal variations. The first putative somaclone derived from genotype CS54 contained 5.48% and 5.52% erucic acid in R0 and R1 regenerants, respectively, compared to the mother plant (41.36%). In comparison, the second somaclone acquired from PM30 exhibited a complete absence of erucic acid corresponding to its mother plant (1.07%). These putative somaclones present a source of variation for exploitation in the development of future mustard crops with low erucic acid content.


2015 ◽  
Vol 41 (4) ◽  
pp. 251-255 ◽  
Author(s):  
Daiane Cristina Martins Barros ◽  
Inês Cristina de Batista Fonseca ◽  
Maria Isabel Balbi-Peña ◽  
Sérgio Florentino Pascholati ◽  
Douglas Casaroto Peitl

ABSTRACTThe incidence and the levels of yield loss caused by the white mold of soybean (caused by the fungus Sclerotinia sclerotiorum) have increased in areas of higher altitude at Cerrado and Southern Brazil, causing yield losses of up to 60%. The aim of this study was to select saprobic fungi with the potential to control the white mold of soybean. First, in vitroantagonism screening was carried out to test eight saprobic fungi against S. sclerotiorum. Assessment of S. sclerotiorum mycelial growth was done at four and seven days after its placement on the culture medium. The isolate showing greatest antagonistic effect in all tests/assessments was Myrothecium sp. An in vivo experiment was conducted in a greenhouse and growth chamber, where plants previously treated with eight saprobic fungi were artificially inoculated with S. sclerotiorum. The fungal culture medium (potato-dextrose) and the commercial resistance inducer acibenzolar-S-methyl were used as controls. In the in vivotests, severity of the white mold was assessed at 8, 14 and 21 days after inoculation. The highest reduction percentage in the lesion length was observed for the treatment with Myrothecium sp. (70%), which has the greater potential to be used as biocontrol agent of soybean under the conditions of this experiment.


Author(s):  
Fereshteh Shahoveisi ◽  
Atena Oladzad ◽  
Luis E. del Rio Mendoza ◽  
Seyedali Hosseinirad ◽  
Susan Ruud ◽  
...  

The polyploid nature of canola (Brassica napus) represents a challenge for the accurate identification of single nucleotide polymorphisms (SNPs) and the detection of quantitative trait loci (QTL). In this study, combinations of eight phenotyping scoring systems and six SNP calling and filtering parameters were evaluated for their efficiency in detection of QTL associated with response to Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, in two doubled haploid (DH) canola mapping populations. Most QTL were detected in lesion length, relative areas under the disease progress curve (rAUDPC) for lesion length, and binomial-plant mortality data sets. Binomial data derived from lesion size were less efficient in QTL detection. Inclusion of additional phenotypic sets to the analysis increased the numbers of significant QTL by 2.3-fold; however, the continuous data sets were more efficient. Between two filtering parameters used to analyze genotyping by sequencing (GBS) data, imputation of missing data increased QTL detection in one population with a high level of missing data but not in the other. Inclusion of segregation-distorted SNPs increased QTL detection but did not impact their R2 values significantly. Twelve of the 16 detected QTL were on chromosomes A02 and C01, and the rest were on A07, A09, and C03. Marker A02-7594120, associated with a QTL on chromosome A02 was detected in both populations. Results of this study suggest the impact of genotypic variant calling and filtering parameters may be population dependent while deriving additional phenotyping scoring systems such as rAUDPC datasets and mortality binary may improve QTL detection efficiency.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Laura Perez-Fons ◽  
Adriana Bohorquez-Chaux ◽  
Maria L. Irigoyen ◽  
Danielle C. Garceau ◽  
Kris Morreel ◽  
...  

Abstract Background Cassava whitefly outbreaks were initially reported in East and Central Africa cassava (Manihot esculenta Crantz) growing regions in the 1990’s and have now spread to other geographical locations, becoming a global pest severely affecting farmers and smallholder income. Whiteflies impact plant yield via feeding and vectoring cassava mosaic and brown streak viruses, making roots unsuitable for food or trading. Deployment of virus resistant varieties has had little impact on whitefly populations and therefore development of whitefly resistant varieties is also necessary as part of integrated pest management strategies. Suitable sources of whitefly resistance exist in germplasm collections that require further characterization to facilitate and assist breeding programs. Results In the present work, a hierarchical metabolomics approach has been employed to investigate the underlying biochemical mechanisms associated with whitefly resistance by comparing two naturally occurring accessions of cassava, one susceptible and one resistant to whitefly. Quantitative differences between genotypes detected at pre-infestation stages were consistently observed at each time point throughout the course of the whitefly infestation. This prevalent differential feature suggests that inherent genotypic differences override the response induced by the presence of whitefly and that they are directly linked with the phenotype observed. The most significant quantitative changes relating to whitefly susceptibility were linked to the phenylpropanoid super-pathway and its linked sub-pathways: monolignol, flavonoid and lignan biosynthesis. These findings suggest that the lignification process in the susceptible variety is less active, as the susceptible accession deposits less lignin and accumulates monolignol intermediates and derivatives thereof, differences that are maintained during the time-course of the infestation. Conclusions Resistance mechanism associated to the cassava whitefly-resistant accession ECU72 is an antixenosis strategy based on reinforcement of cell walls. Both resistant and susceptible accessions respond differently to whitefly attack at biochemical level, but the inherent metabolic differences are directly linked to the resistance phenotype rather than an induced response in the plant.


2010 ◽  
Vol 48 (10-11) ◽  
pp. 903-908 ◽  
Author(s):  
Djordje Malenčić ◽  
Biljana Kiprovski ◽  
Milan Popović ◽  
Dejan Prvulović ◽  
Jegor Miladinović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document