scholarly journals Antibody–Drug Conjugates: The Last Decade

2020 ◽  
Vol 13 (9) ◽  
pp. 245 ◽  
Author(s):  
Nicolas Joubert ◽  
Alain Beck ◽  
Charles Dumontet ◽  
Caroline Denevault-Sabourin

An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.

Author(s):  
Kirollos S Hanna ◽  
Samantha Larson ◽  
Jenny Nguyen ◽  
Jenna Boudreau ◽  
Jennifer Bulin ◽  
...  

Abstract Disclaimer In an effort to expedite the publication of articles pandemic, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The treatment landscape of advanced bladder cancer continues to evolve with novel therapeutics approved in recent years and many in the pipeline. Here we review the role of the novel agents enfortumab vedotin and sacituzumab govitecan in treatment of advanced disease. Summary Patients with advanced bladder cancer often first receive platinum-based therapy, while immune checkpoint inhibitors offer a maintenance option following cytotoxic chemotherapy or a second-line option. Despite various first- and second-line options, patients with significant comorbidities and treatment-related adverse events will experience disease progression requiring alternative treatment. Enfortumab vedotin and sacituzumab govitecan are novel antibody-drug conjugates approved in patients with advanced bladder cancer following platinum-based and immune checkpoint inhibitor therapy. Following platinum-based therapy and immunotherapy in patients with advanced bladder cancer, enfortumab vedotin, targeting Nectin-4, improves overall survival while sacituzumab govitecan, targeting Trop-2, is associated with a 27% response rate. With these new approaches to disease management, however, it remains critical to understand safety, efficacy, and operational considerations to optimize outcomes. Conclusion When selecting an antibody-drug conjugate to treat patients with bladder cancer, it is important to note the adverse event profile of each agent to optimize outcomes and safety for patients.


Author(s):  
Frederik Marmé

Background Despite the advances that have been made to improve conventional chemotherapies, their use is limited by a narrow therapeutic window based on off-target toxicities. Antibody-drug-conjugates (ADCs) are composed of an antibody and a toxic payload covalently coupled by a chemical linker. They constitute an elegant means to tackle the limitations of conventional chemotherapeutics by selectively delivering a highly toxic payload directly to target cells and thereby increasing efficacy of the delivered cytotoxic but at the same time limiting systemic exposure and toxicities. As such they appear inspired by Paul Ehrlich´s concept of a “magic bullet”, which he envisioned as drugs that go directly to their target to attack pathogens but remain harmless in healthy tissues. Summary The concept of conjugating drugs to antibodies via chemical linkers is not new. As early as in the 1960s researchers started to investigate such ADCs in animal models and first clinical trials based on mouse antibodies began in the 1980s. Although the concept appears relatively straightforward, ADCs are highly complex molecules, and it took several decades of research and development until the first ADC became approved by the FDA in 2000 and the second followed not until 11 years later. The development of an effective ADC is highly demanding, and each individual component of an ADC must be optimized: the target, the antibody, the linker and its conjugation chemistry as well as the cytotoxic payload. Today there are 9 approved ADCs overall and 3 for breast cancer. So, the pace of development seems to pick up with over 100 candidates in various stages of clinical development. Many ADCs of the newest generation are optimized to elicit a so-called bystander effect, to increase efficacy and tackle heterogneous antigen expression. This approach requires a balancing of efficacy and systemic toxicity. Hence, ADCs based on their complex biology cause relevant toxicities, which are characteristic for each specific compound and may include hematologic toxicities, elevated transaminases, gastrointestinal events, pneumonitis but also ocular toxicities as well as others many physicians may initially not be very familiar with. Management of the side effects will be key to the successful clinical use of these potent drugs. Key Messages This review focusses on the clinical experience with ADCs approved in breast cancer as well as promising candidates in late-stage clinical development. We will discuss the mode of action, biology, and composition of ADCs and how each of these crucial components influences their properties and efficacy.


2019 ◽  
Vol 35 (12) ◽  
pp. 1043-1053 ◽  
Author(s):  
Alain Beck ◽  
Charles Dumontet ◽  
Nicolas Joubert

Un anticorps armé (ADC, antibody-drug conjugate en anglais) est une chimiothérapie vectorisée qui résulte du greffage d’un agent cytotoxique sur un anticorps monoclonal par l’intermédiaire d’un bras espaceur judicieusement construit. Les anticorps armés ont fait des progrès considérables en 10 ans. En 2009, seul le gemtuzumab ozogamicine (Mylotarg®) était utilisé en clinique. En 2019, 4 autres ADC ont été approuvés par la Food and Drug Administration et plus de 80 autres sont en études cliniques actives. La seconde partie de cette revue sera focalisée sur les nouvelles stratégies émergentes pour faire face aux limitations des ADC actuels et pour tenter d’élargir leur fenêtre thérapeutique. Enfin, les combinaisons avec la chimiothérapie classique ou les inhibiteurs de points de contrôles seront discutées, pour tenter de faire des anticorps armés la magic bullet dont rêvait Paul Ehrlich.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Dimitrios Vlachakis ◽  
Sophia Kossida

Antibodies appear to be the first line of defence in the adaptive immune response of vertebrates and thereby are involved in a multitude of biochemical mechanisms, such as regulation of infection, autoimmunity, and cancer. It goes without saying that a full understanding of antibody function is required for the development of novel antibody-interacting drugs. These drugs are the Antibody Drug Conjugates (ADCs), which are a new type of targeted therapy, used for example for cancer. They consist of an antibody (or antibody fragment such as a single-chain variable fragment [scFv]) linked to a payload drug (often cytotoxic). Because of the targeting, the side effects should be lower and give a wider therapeutic window. Overall, the underlying principle of ADCs is to discern the delivery of a drug that is cytotoxic to a target that is cancerous, hoping to increase the antitumoural potency of the original drug by reducing adverse effects and side effects, such as toxicity of the cancer target. This is a pioneering field that employs state-of-the-art computational and molecular biology methods in the fight against cancer using ADCs.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Bo Yu ◽  
Delong Liu

Abstract Targeted agents are increasingly used for the therapy of acute myeloid leukemia (AML). Gemtuzumab ozogamicin (GO) is the first antibody-drug conjugate (ADC) approved for induction therapy of AML. When used in fractionated doses, GO combined with the conventional cytarabine/anthracycline-based induction chemotherapy significantly improves the outcome of previously untreated AML patients. Single-agent GO is effective and safe for AML patient ineligible for intensive chemotherapy. Multiple combination regimens incorporating GO have also been recommended as potential alternative options. In addition, several novel ADCs targeting CD33, CD123 and CLL-1 are currently undergoing preclinical or early clinical investigations. In this review, we summarized the efficacy and limitations of GO as well as novel ADCs for adult AML patients.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4631
Author(s):  
Lucía Gandullo-Sánchez ◽  
Alberto Ocaña ◽  
Atanasio Pandiella

In the last 20 years, antibody-drug conjugates (ADCs) have been incorporated into the oncology clinic as treatments for several types of cancer. So far, the Food and Drug Administration (FDA) has approved 11 ADCs and other ADCs are in the late stages of clinical development. Despite the efficacy of this type of drug, the tumors of some patients may result in resistance to ADCs. Due to this, it is essential not only to comprehend resistance mechanisms but also to develop strategies to overcome resistance to ADCs. To reach these goals, the generation and use of preclinical models to study those mechanisms of resistance are critical. Some cells or patient tumors may result in primary resistance to the action of an ADC, even if they express the antigen against which the ADC is directed. Isolated primary tumoral cells, cell lines, or patient explants (patient-derived xenografts) with these characteristics can be used to study primary resistance. The most common method to generate models of secondary resistance is to treat cancer cell lines or tumors with an ADC. Two strategies, either continuous treatment with the ADC or intermittent treatment, have successfully been used to develop those resistance models.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1914885
Author(s):  
Min Ji Ko ◽  
Daehae Song ◽  
Juhee Kim ◽  
Jae Yong Kim ◽  
Jaehyun Eom ◽  
...  

Synlett ◽  
2021 ◽  
Author(s):  
Kazuki Takahashi ◽  
Akira Sugiyama ◽  
Kei Ohkubo ◽  
Toshifumi Tatsumi ◽  
Tatsuhiko Kodama ◽  
...  

IR700, a silicon phthalocyanine (SiPc) photosensitizer, is an antibody-drug conjugate payload used clinically. It is, however, the sole SiPc payload to date, possibly due to the difficulty of its synthesis, resulting from its asymmetric phathalocyanine skeleton. Here we report a new axially-substituted SiPc payload with easier synthesis. Trastuzumab conjugated with the SiPc showed light- and antigen-dependent cytotoxicity in HER2-overexpressed cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document