scholarly journals Antibody Drug Conjugate Bioinformatics: Drug Delivery through the Letterbox

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Dimitrios Vlachakis ◽  
Sophia Kossida

Antibodies appear to be the first line of defence in the adaptive immune response of vertebrates and thereby are involved in a multitude of biochemical mechanisms, such as regulation of infection, autoimmunity, and cancer. It goes without saying that a full understanding of antibody function is required for the development of novel antibody-interacting drugs. These drugs are the Antibody Drug Conjugates (ADCs), which are a new type of targeted therapy, used for example for cancer. They consist of an antibody (or antibody fragment such as a single-chain variable fragment [scFv]) linked to a payload drug (often cytotoxic). Because of the targeting, the side effects should be lower and give a wider therapeutic window. Overall, the underlying principle of ADCs is to discern the delivery of a drug that is cytotoxic to a target that is cancerous, hoping to increase the antitumoural potency of the original drug by reducing adverse effects and side effects, such as toxicity of the cancer target. This is a pioneering field that employs state-of-the-art computational and molecular biology methods in the fight against cancer using ADCs.

2020 ◽  
Vol 13 (9) ◽  
pp. 245 ◽  
Author(s):  
Nicolas Joubert ◽  
Alain Beck ◽  
Charles Dumontet ◽  
Caroline Denevault-Sabourin

An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Tobias Weber ◽  
Athanasios Mavratzas ◽  
Stefan Kiesgen ◽  
Stephanie Haase ◽  
Benedikt Bötticher ◽  
...  

Antibody-drug conjugates (ADCs) have evolved as a new class of potent cancer therapeutics. We here report on the development of ADCs with specificity for the B-cell lineage specific (surface) antigen CD22 being expressed in the majority of hematological malignancies. As targeting moiety a previously generated humanized anti-CD22 single-chain variable fragment (scFv) derivative from the monoclonal antibody RFB4 was reengineered into a humanized IgG1 antibody format (huRFB4). Onconase (ranpirnase), a clinically active pancreatic-type ribonuclease, was employed as cytotoxic payload moiety. Chemical conjugation via thiol-cleavable disulfide linkage retained full enzymatic activity and full binding affinity of the ADC. Development of sophisticated purification procedures using size exclusion and ion exchange chromatography allowed the separation of immunoconjugate species with stoichiometrically defined number of Onconase cargos. A minimum of two Onconase molecules per IgG was required for achieving significantin vitrocytotoxicity towards lymphoma and leukemia cell lines. Antibody-drug conjugates with an Onconase to antibody ratio of 3 : 1 exhibited an IC50of 0.08 nM, corresponding to more than 18,400-fold increased cytotoxicity of the ADC when compared with unconjugated Onconase. These results justify further development of this ADC as a promising first-in-class compound for the treatment of CD22-positive malignancies.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1914885
Author(s):  
Min Ji Ko ◽  
Daehae Song ◽  
Juhee Kim ◽  
Jae Yong Kim ◽  
Jaehyun Eom ◽  
...  

Synlett ◽  
2021 ◽  
Author(s):  
Kazuki Takahashi ◽  
Akira Sugiyama ◽  
Kei Ohkubo ◽  
Toshifumi Tatsumi ◽  
Tatsuhiko Kodama ◽  
...  

IR700, a silicon phthalocyanine (SiPc) photosensitizer, is an antibody-drug conjugate payload used clinically. It is, however, the sole SiPc payload to date, possibly due to the difficulty of its synthesis, resulting from its asymmetric phathalocyanine skeleton. Here we report a new axially-substituted SiPc payload with easier synthesis. Trastuzumab conjugated with the SiPc showed light- and antigen-dependent cytotoxicity in HER2-overexpressed cancer cell lines.


2019 ◽  
Author(s):  
Susanna K. Elledge ◽  
Hai L. Tran ◽  
Alec H. Christian ◽  
Veronica Steri ◽  
Byron Hann ◽  
...  

AbstractChemical modification of antibodies is one of the most important bioconjugations utilized by biologists and biotechnology. To date, the field has been dominated by random modification of lysines or more site-specific labeling of cysteines, each with attendant challenges. Recently we have developed oxaziridine chemistry for highly selective and efficient sulfimide modification of methionine called redox-activated chemical tagging (ReACT). Here, we systematically scanned methionines throughout one of the most popular antibody scaffolds, trastuzumab, for antibody engineering and drug conjugation. We tested the expression, reactivities, and stabilities of 123 single engineered methionines distributed over the surface of the antibody when reacted with oxaziridine. We found uniformly high expression for these mutants and generally good reaction efficiencies with the panel of oxaziridines. Remarkably, the stability to hydrolysis of the sulfimide varied more than ten-fold depending on temperature and the site of the engineered methionine. Interestingly, the most stable and reactive sites were those that were partially buried, likely because of their reduced access to water. There was also a ten-fold variation in stability depending on the nature of the oxaziridine, which we determined was inversely correlated with the electrophilic nature of the sulfimide. Importantly, the stabilities of the best analogs and antibody drug conjugate potencies were comparable to those reported for cysteine-maleimide modifications of trastuzumab. We also found our antibody drug conjugates to be potent in a breast cancer mouse xenograft model. These studies provide a roadmap for broad application of ReACT for efficient, stable, and site-specific antibody and protein bioconjugation.


2021 ◽  
Author(s):  
Syed Usama ◽  
Sierra Marker ◽  
Donald Caldwell ◽  
Nimit Patel ◽  
Yang Feng ◽  
...  

Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the antibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitively assess cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits dramatically in-creased cellular signal due to improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are ~50X brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers provide dramatically higher tumor activation relative to hindered or non-hindered disulfides – an observation that is only apparent with in vivo imaging. This strategy enables quantitative comparisons of cleavable linker chemistries in complex tissue settings with implications across the drug delivery landscape.


Author(s):  
Kirollos S Hanna ◽  
Samantha Larson ◽  
Jenny Nguyen ◽  
Jenna Boudreau ◽  
Jennifer Bulin ◽  
...  

Abstract Disclaimer In an effort to expedite the publication of articles pandemic, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The treatment landscape of advanced bladder cancer continues to evolve with novel therapeutics approved in recent years and many in the pipeline. Here we review the role of the novel agents enfortumab vedotin and sacituzumab govitecan in treatment of advanced disease. Summary Patients with advanced bladder cancer often first receive platinum-based therapy, while immune checkpoint inhibitors offer a maintenance option following cytotoxic chemotherapy or a second-line option. Despite various first- and second-line options, patients with significant comorbidities and treatment-related adverse events will experience disease progression requiring alternative treatment. Enfortumab vedotin and sacituzumab govitecan are novel antibody-drug conjugates approved in patients with advanced bladder cancer following platinum-based and immune checkpoint inhibitor therapy. Following platinum-based therapy and immunotherapy in patients with advanced bladder cancer, enfortumab vedotin, targeting Nectin-4, improves overall survival while sacituzumab govitecan, targeting Trop-2, is associated with a 27% response rate. With these new approaches to disease management, however, it remains critical to understand safety, efficacy, and operational considerations to optimize outcomes. Conclusion When selecting an antibody-drug conjugate to treat patients with bladder cancer, it is important to note the adverse event profile of each agent to optimize outcomes and safety for patients.


Author(s):  
Frederik Marmé

Background Despite the advances that have been made to improve conventional chemotherapies, their use is limited by a narrow therapeutic window based on off-target toxicities. Antibody-drug-conjugates (ADCs) are composed of an antibody and a toxic payload covalently coupled by a chemical linker. They constitute an elegant means to tackle the limitations of conventional chemotherapeutics by selectively delivering a highly toxic payload directly to target cells and thereby increasing efficacy of the delivered cytotoxic but at the same time limiting systemic exposure and toxicities. As such they appear inspired by Paul Ehrlich´s concept of a “magic bullet”, which he envisioned as drugs that go directly to their target to attack pathogens but remain harmless in healthy tissues. Summary The concept of conjugating drugs to antibodies via chemical linkers is not new. As early as in the 1960s researchers started to investigate such ADCs in animal models and first clinical trials based on mouse antibodies began in the 1980s. Although the concept appears relatively straightforward, ADCs are highly complex molecules, and it took several decades of research and development until the first ADC became approved by the FDA in 2000 and the second followed not until 11 years later. The development of an effective ADC is highly demanding, and each individual component of an ADC must be optimized: the target, the antibody, the linker and its conjugation chemistry as well as the cytotoxic payload. Today there are 9 approved ADCs overall and 3 for breast cancer. So, the pace of development seems to pick up with over 100 candidates in various stages of clinical development. Many ADCs of the newest generation are optimized to elicit a so-called bystander effect, to increase efficacy and tackle heterogneous antigen expression. This approach requires a balancing of efficacy and systemic toxicity. Hence, ADCs based on their complex biology cause relevant toxicities, which are characteristic for each specific compound and may include hematologic toxicities, elevated transaminases, gastrointestinal events, pneumonitis but also ocular toxicities as well as others many physicians may initially not be very familiar with. Management of the side effects will be key to the successful clinical use of these potent drugs. Key Messages This review focusses on the clinical experience with ADCs approved in breast cancer as well as promising candidates in late-stage clinical development. We will discuss the mode of action, biology, and composition of ADCs and how each of these crucial components influences their properties and efficacy.


Author(s):  
Rohan Mathur ◽  
George J. Weiner

Antibody-drug conjugates (ADCs) combine the cytotoxic potential of chemotherapeutic drugs with the specificity of monoclonal antibodies (mAbs). After many years of unfulfilled promise, the field of ADCs is experiencing resurgence as more is learned about each of the components of an ADC and how these components need to be combined to produce a successful therapeutic agent. Choosing an appropriate target for ADCs is a critical parameter that effects the efficacy, therapeutic window, and toxicity profile of ADCs. This review will focus on the concepts underlying the choice of the target, review specific current ADCs and their targets, and look to the future of ADCs.


Sign in / Sign up

Export Citation Format

Share Document