scholarly journals Identification of SARS-CoV-2 E Channel Blockers from a Repurposed Drug Library

2021 ◽  
Vol 14 (7) ◽  
pp. 604
Author(s):  
Prabhat Pratap Singh Tomar ◽  
Miriam Krugliak ◽  
Isaiah T. Arkin

SARS-CoV-2, the etiological agent of the COVID-19 pandemic, is a member of the Coronaviridae family. It is an enveloped virus with ion channels in its membrane, the most characterized of which is the E protein. Therefore, in an attempt to identify blockers of the E channel, we screened a library of 2839 approved-for-human-use drugs. Our approach yielded eight compounds that exhibited appreciable activity in three bacteria-based channel assays. Considering the fact that the E channel is the most conserved of all SARS-CoV-2 proteins, any inhibitor of its activity may provide an option to curb the viral spread. In addition, inhibitors can also enhance our ability to understand the exact role played by the E protein during the infectivity cycle. Finally, detailed electrophysiological analyses, alongside in vitro and in vivo studies will be needed to establish the exact potential of each of the blockers identified in our study.

Author(s):  
Prabhat Pratap Singh Tomar ◽  
Miriam Krugliak ◽  
Isaiah Tuvia Arkin

It is difficult to overstate the impact that COVID-19 had on humankind. The pandemic’s etiological agent, SARS-CoV-2, is a member of the Coronaviridae, and as such, is an enveloped virus with ion channels in its membrane. Therefore, in an attempt to provide an option to curb the viral spread, we searched for blockers of its E protein viro-porin. Using three bacteria-based assays, we identified eight compounds that exhibited activity after screening a library of ca. 3000 approved-for-human-use drugs. Reassuringly, analysis of viral replication in tissue culture indicated that most of the compounds could reduce infectivity to varying extents. In conclusion, targeting a particular channel in the virus for drug repurposing may increase our arsenal of treatment options to combat COVID-19 virulence.Significance StatementThe goal of our study was to expand the treatment arsenal against COVID-19. To that end, we have decided to focus on drug therapy, and as a target - the E protein, an ion channel in the virus. Ion channels as a family are excellent drug targets, but viral channels have been underexploited for pharmaceutical point intervention. To hasten future regulatory requirements and focus the chemical search space, we screened a library of ca. 3000 approved-for-human-use drugs using three independent bacteria-based assays. Our results yielded eight compounds, which were subsequently tested for antiviral activity in tissue culture. Gratifyingly, most compounds were able to reduce viral replication, and as such, both validate our approach and potentially augment our anti-COVID tool kit.


1987 ◽  
Vol 65 (4) ◽  
pp. 729-745 ◽  
Author(s):  
B. M. Altura ◽  
B. T. Altura ◽  
A. Carella ◽  
A. Gebrewold ◽  
T. Murakawa ◽  
...  

Contractility of all types of invertebrate and vertebrate muscle is dependent upon the actions and interactions of two divalent cations, viz., calcium (Ca2+) and magnesium (Mg2+) ions. The data presented and reviewed herein contrast the actions of several organic Ca2+ channel blockers with the natural, physiologic (inorganic) Ca2+ antagonist, Mg2+, on microvascular and macrovascular smooth muscles. Both direct in vivo studies on microscopic arteriolar and venular smooth muscles and in vitro studies on different types of blood vessels are presented. It is clear from the studies done so far that of all Ca2+ antagonists examined, only Mg2+ has the capability to inhibit myogenic, basal, and hormonal-induced vascular tone in all types of vascular smooth muscle. Data obtained with verapamil, nimopidine, nitrendipine, and nisoldipine on the microvasculature are suggestive of the probability that a heterogeneity of Ca2+ channels, and of Ca2+ binding sites, exists in different microvascular smooth muscles; although some appear to be voltage operated and others, receptor operated, they are probably heterogeneous in composition from one vascular region to another. Mg2+ appears to act on voltage-, receptor-, and leak-operated membrane channels in vascular smooth muscle. The organic Ca2+ channel blockers do not have this uniform capability; they demonstrate a selectivity when compared with Mg2+. Mg2+ appears to be a special kind of Ca2+ channel antagonist in vascular smooth muscle. At vascular membranes it can (i) block Ca2+ entry and exit, (ii) lower peripheral and cerebral vascular resistance, (iii) relieve cerebral, coronary, and peripheral vasospasm, and (iv) lower arterial blood pressure. At micromolar concentrations (i.e., 10–100 μM), Mg2+ can cause significant vasodilatation of intact arterioles and venules in all regional vasculatures so far examined. Although Mg2+ is three to five orders of magnitude less potent than the organic Ca2+ channel blockers, it possesses unique and potentially useful Ca2+ antagonistic properties.


2010 ◽  
Vol 6 (10) ◽  
pp. e1001157 ◽  
Author(s):  
Aihua Zheng ◽  
Mahadevaiah Umashankar ◽  
Margaret Kielian

2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document