scholarly journals GMP-Compliant Radiosynthesis of [18F]GP1, a Novel PET Tracer for the Detection of Thrombi

2021 ◽  
Vol 14 (8) ◽  
pp. 739
Author(s):  
Verena Hugenberg ◽  
Marion Zerna ◽  
Mathias Berndt ◽  
Reinhard Zabel ◽  
Rainer Preuss ◽  
...  

Thrombus formation and thromboembolic events play important roles in various cardiovascular pathologies. The key receptor involved in platelet aggregation is the fibrinogen receptor glycoprotein IIb/IIIa. [18F]GP1, a derivative of the GPIIb/IIIa antagonist elarofiban, is a specific 18F-labeled small-molecule radiotracer that binds with high affinity to GPIIb/IIIa receptors of activated platelets. An improved, robust and fully automated radiosynthesis of [18F]GP1 has been developed. [18F]GP1 has been synthesized with decay corrected radiochemical yields of 38 ± 6%, with a radiochemical concentration up to 1900 MBq/mL, molar activities of 952–9428 GBq/µmol and a radio-chemical purity >98%. After determination of the optimal reaction conditions, in particular for HPLC separation, adaption of the reaction conditions to PET center requirements, validation of the manufacturing process and the quality control methods, the synthesis of [18F]GP1 was successfully implemented to GMP standards and was available for clinical application. We describe the GMP-compliant synthesis of the novel radiotracer [18F]GP1. Moreover, we provide some proof-of-concept examples for clinical application in the cardiovascular field. PET/CT with the novel small-molecular radiotracer [18F]GP1 may serve as a novel highly sensitive tool for visualizing active platelet aggregation at the molecular level.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3197 ◽  
Author(s):  
Victoriya V. Orlovskaya ◽  
Daniel J. Modemann ◽  
Olga F. Kuznetsova ◽  
Olga S. Fedorova ◽  
Elizaveta A. Urusova ◽  
...  

In the era of personalized precision medicine, positron emission tomography (PET) and related hybrid methods like PET/CT and PET/MRI gain recognition as indispensable tools of clinical diagnostics. A broader implementation of these imaging modalities in clinical routine is closely dependent on the increased availability of established and emerging PET-tracers, which in turn could be accessible by the development of simple, reliable, and efficient radiolabeling procedures. A further requirement is a cGMP production of imaging probes in automated synthesis modules. Herein, a novel protocol for the efficient preparation of 18F-labeled aromatics via Cu-mediated radiofluorination of (aryl)(mesityl)iodonium salts without the need of evaporation steps is described. Labeled aromatics were prepared in high radiochemical yields simply by heating of iodonium [18F]fluorides with the Cu-mediator in methanolic DMF. The iodonium [18F]fluorides were prepared by direct elution of 18F− from an anion exchange resin with solutions of the corresponding precursors in MeOH/DMF. The practicality of the novel method was confirmed by the racemization-free production of radiolabeled fluorophenylalanines, including hitherto unknown 3-[18F]FPhe, in 22–69% isolated radiochemical yields as well as its direct implementation into a remote-controlled synthesis unit.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1713-1721
Author(s):  
JA Ware ◽  
J Kang ◽  
MT DeCenzo ◽  
M Smith ◽  
SC Watkins ◽  
...  

Platelets adhere to artificial surfaces in the initial stage of thrombus formation, but the subsequent steps in signal transduction that lead to platelet activation by artificial surfaces are not understood. When 0.325-micron diameter beads composed of a hydrophobic polymer, polymethylmethacrylate (PMMA), were added to gel-filtered aequorin-loaded platelets suspended in media containing Ca2+, the platelets aggregated; addition of fibrinogen was not required. Platelet aggregation was preceded by an increase in cytoplasmic Ca2+ and was accompanied by phosphorylation of the 47-Kd substrate of protein kinase C (PKC), 5-hydroxytryptamine (5-HT) release, and accumulation of phosphatidic acid. All these effects were partially inhibited by apyrase and aspirin. Monoclonal antibodies (MoAbs) 7E3 and M148 and the synthetic peptides RGDS and fibrinogen gamma chain fragment 400–411, all of which bind to the platelet fibrinogen receptor glycoprotein IIb- IIIa (GPIIb-IIIa) and inhibit fibrinogen binding, prevented PMMA- induced aggregation but did not inhibit the Ca2+ increase. Chymotrypsin- treated platelets aggregated after addition of fibrinogen, but not PMMA. We conclude that platelets interact initially with PMMA at membrane sites other than those required for fibrinogen binding, leading to activation of membrane phospholipases and PKC, an increase in cytoplasmic Ca2+, release of 5-HT, ADP, and fibrinogen from storage granules, and to platelet aggregation.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1713-1721 ◽  
Author(s):  
JA Ware ◽  
J Kang ◽  
MT DeCenzo ◽  
M Smith ◽  
SC Watkins ◽  
...  

Abstract Platelets adhere to artificial surfaces in the initial stage of thrombus formation, but the subsequent steps in signal transduction that lead to platelet activation by artificial surfaces are not understood. When 0.325-micron diameter beads composed of a hydrophobic polymer, polymethylmethacrylate (PMMA), were added to gel-filtered aequorin-loaded platelets suspended in media containing Ca2+, the platelets aggregated; addition of fibrinogen was not required. Platelet aggregation was preceded by an increase in cytoplasmic Ca2+ and was accompanied by phosphorylation of the 47-Kd substrate of protein kinase C (PKC), 5-hydroxytryptamine (5-HT) release, and accumulation of phosphatidic acid. All these effects were partially inhibited by apyrase and aspirin. Monoclonal antibodies (MoAbs) 7E3 and M148 and the synthetic peptides RGDS and fibrinogen gamma chain fragment 400–411, all of which bind to the platelet fibrinogen receptor glycoprotein IIb- IIIa (GPIIb-IIIa) and inhibit fibrinogen binding, prevented PMMA- induced aggregation but did not inhibit the Ca2+ increase. Chymotrypsin- treated platelets aggregated after addition of fibrinogen, but not PMMA. We conclude that platelets interact initially with PMMA at membrane sites other than those required for fibrinogen binding, leading to activation of membrane phospholipases and PKC, an increase in cytoplasmic Ca2+, release of 5-HT, ADP, and fibrinogen from storage granules, and to platelet aggregation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 20-20
Author(s):  
Meghna Ulhas Naik ◽  
Maloney David ◽  
Ramya Turaga ◽  
Hidinori Ichijo ◽  
Ulhas P Naik

Abstract Apoptosis signal-regulating kinase (ASK1) is a serine/threonine kinase, belonging to the MAP kinase-kinase-kinase family, which is activated in response to stress. However, its presence and role in platelets are not known. We found that ASK1 is expressed in platelets and is rapidly activated during platelet stimulation by various agonists in a dose-dependent manner. In addition, we found that TRAF2/6, known endogenous activators of ASK1, are expressed in platelets and associate with ASK1 upon platelet activation with agonists. Furthermore, genetic ablation of Ask1 significantly delayed tail-bleeding time (P=0.2x10-9). While WT mice showed an average bleeding time of 100 s, the Ask1 null mice had an average bleeding time of 576 s. A carotid artery injury induced by 10% FeCl3 showed a significantly increased (P=0.0003) time of occlusion and unstable thrombus formation in Ask1 null mice. Furthermore, we found that loss of Ask1 renders significant protection to the mice from pulmonary thromboembolism induced by a mixture of collagen and epinephrine as determined by increased survival and lack of large occlusive thrombi in the lung. We also found that ADP- and AYPGKF (PAR4 receptor peptide) -induced platelet aggregation was diminished in Ask1 null mice compared to WT mice. Furthermore, PAR4 peptide-induced alpha- and dense-granular secretion was also reduced in Ask1 null platelets compared to WT. Interestingly, we also found that Ask1 null platelets bind less FITC-fibrinogen compared to the WT upon activation by PAR4 peptide. Furthermore, thrombin failed to activate MKK6 and p38 in Ask1 knockout platelets, showing that Ask1 is indispensable for p38 activation by thrombin. These results indicated that ASK1 regulates platelet function by augmenting platelet secretion as well as fibrinogen receptor activation, making it an important target for combating thrombosis. We therefore synthesized a novel and highly specific ASK1 inhibitor, N-(6-(1H-imidazol-1-yl)imidazo[1,2-a]pyridin-2-yl)-4-(tert-butyl)benzamide (IPTB) based on the published report. IPTB has been found to be a very potent inhibitor that inhibits ASK1 activity at nM concentrations. IPTB is also highly specific to ASK1 and does not affect activities of related protein kinases such as ASK2, MEKK1, TAK1, and ERK1. We found that in human platelets, IPTB dose-dependently inhibits p38 activation induced by a variety of platelet agonists. Furthermore, IPTB dose-dependently inhibited ADP and PAR4 peptide-induced platelet aggregation. Interestingly, IPTB also dose-dependently inhibited platelet spreading on immobilized fibrinogen. Our results strongly suggest that the dose of IPTB could be adjusted so that it attenuates thrombosis without affecting hemostasis. This development would make IPTB a novel potential therapeutic agent to be used to combat thrombotic disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3833-3833
Author(s):  
Meghna U. Naik ◽  
Xi Chen ◽  
Brendan Bachman ◽  
Ganesha Rai ◽  
David Maloney ◽  
...  

Abstract Platelets play a critical role in both hemostasis and thrombosis. Anti-platelet drugs currently available apart from aspirin are directed against platelet agonist receptors or fibrinogen receptor integrin aIIbb3. These antagonists, although having potent anti-thrombotic activities, cause severe bleeding due to their effect on hemostasis. It is therefore of utmost important to develop new drugs that will protect from thrombosis with minimal effect on hemostasis. Apoptosis signal-regulating kinase (ASK1) is a redox sensitive serine/threonine kinase, belonging to the MAP kinase-kinase-kinase family, which is activated in response to stress. However, its role in platelets is not known. We found that ASK1 is rapidly activated downstream of all platelet agonists. Ablation of Ask1 gene results in impaired platelet functions such as granule secretion, thromboxane A2 generation, as well as fibrinogen receptor activation, which translates into attenuated platelet aggregation compared to WT littermates. We also found that thrombin failed to activate p38 in Ask1 null platelets, showing that Ask1 is indispensable for p38 activation by thrombin. FeCl3-induced carotid artery injury model of thrombosis showed a significantly increased (P=0.0003) time of occlusion and unstable thrombus formation in Ask1 null mice. These results indicated that ASK1 plays a central role in regulating platelet function, making it a potential target for combating thrombosis. We therefore synthesized two novel and highly specific ASK1 inhibitors based on the published reports, N-(6-(1H-imidazol-1-yl)imidazo[1,2-a]pyridin-2-yl)-4-(tert-butyl)benzamide (IPTB) and GS-4997. We found that GS-4997 (500nM) and IPTB (5mM) inhibit agonist-induced ASK1 activation in human platelets. They do not affect activities of related protein kinases such as ASK2, MEKK1, TAK1, and ERK1/2. We also found that IPTB and GS-4997 dose-dependently inhibited activation of p38, a downstream effector kinase, induced by a variety of platelet agonists. Furthermore, these compounds dose-dependently inhibited ADP, collagen, convulxin and PAR4 activating peptide AYPGKF-induced platelet aggregation as well as platelet spreading on immobilized fibrinogen. In-vivo carotid artery thrombosis assay revealed that WT mice injected intraperitoneally with either IPTB (100mg/kg) of GS-4997 (100mg/kg), showed a significantly increased time of occlusion (P=0.028 and P=0.005 respectively) and thrombus formed were unstable as compared to control WT mice treated with saline alone. Furthermore, injection of either IPTB or GS-4997 protected mice against collagen/epinephrine-induced pulmonary thromboembolism. Out of 14 saline-treated mice only two survived whereas, 10 out of 11 mice treated with GS-4997 (100mg/kg) survived (P=0.0002). In case of IPTB 1 out of 12 control mice survived as compared to 9 out of 12 treated mice (P=0.0028). Interestingly, tail-bleeding studies revealed that WT mice treated with either IPTB (1mg/kg) of GS-4997 (1mg/kg), did not affect the average bleeding time (100s) seen in the WT mice treated with saline alone, suggesting that both inhibitors had no effect on in-vivo hemostasis. Moreover, pretreatment of the whole blood with these inhibitors significantly reduced thrombus formation under arterial flow (800s-1) without affecting platelet adhesion to collagen as assessed using a microfluidic device. Our results strongly suggest that both IPTB and GS-4997 protect the mice from thrombosis without affecting hemostasis. Further development of these inhibitors as a potential therapeutic agent to combat thrombotic disorders is highly warranted. Disclosures No relevant conflicts of interest to declare.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Manojkumar Valiyaveettil ◽  
Weiyi Feng ◽  
Ganapati Mahabaleshwar ◽  
David Phillips ◽  
Tatiana Byzova ◽  
...  

Functional activity of platelet fibrinogen receptor αIIbβ3 is crucial for hemostasis and thrombosis. The process of αIIbβ3 activation in platelet aggregation is tightly regulated. It has been previously shown that β3 subunit of the complex undergo tyrosine phosphorylation, which, in turn, is believed to control recruitment of several intracellular adaptors. Mutations of Tyr747/ Tyr759 within the cytoplasmic domain of αIIbβ3 (DiYF substitution) were found to result in reversible platelet aggregation. To assess whether αIIbβ3 tyrosine phosphorylation is critical for arterial thrombosis, we utilized intravital microscopy to monitor thrombus formation in vivo in WT and DiYF mice. Compared to WT, DiYF mice exhibited delayed platelet adhesion and reduced rate of thrombus formation at the initial stages of thrombosis. Likewise, isolated DiYF platelets exhibited reduced adhesion to collagen under in vitro sheer conditions compared to WT. The progression phase of thrombosis in vivo was similar in WT and DiYF mice. The most dramatic difference was observed at the final phase of thrombus formation since it took 3-times longer for blood vessels in DiYF mice to occlude compared to WT. To specifically address the role if β3 phosphorylation in platelet αIIbβ3 vs αvβ3 on leukocytes and vascular cells, we transfused labeled WT and DiYF platelets into irradiated WT mice with low blood cells and platelet counts. It was found that transfusion of DiYF but not WT platelets resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion time in vivo. Similar differences were observed in tail bleeding test. Importantly, we have found that the lack of β3 phosphorylation impaired an ability of platelets to generate microparticles in response to activation, an event believed to be critical for the final stages of thrombosis. When stimulated with thrombin and PMA, DiYF platelets shed ~50% less Annexin V-positive microparticles as compared to WT platelets. Thus, β3 tyrosine phosphorylation of αIIbβ3 in platelets is crucial for the microparticles generation by activated platelets and the overall process of arterial thrombosis in vivo.


1997 ◽  
Vol 6 (5) ◽  
pp. 406-414 ◽  
Author(s):  
LG Futterman ◽  
L Lemberg

Appreciation of the critical role of platelets in cardiovascular disease came when it was shown that aspirin, by virtue of its ability to block platelet aggregation, reduced the combined incidence of MI, stroke, and vascular death by 25%. Understanding the key role played by platelets in acute thrombotic vascular events prompted the development of a new class of drugs to control platelet action. Platelet aggregation is mediated exclusively by the platelet fibrinogen receptor GP IIb/IIIa. The binding of the receptor with fibrinogen is the final common pathway leading to platelet aggregation and thrombus formation. Abciximab, the first GP IIb/IIIa platelet receptor inhibitor, effectively reduces the thrombotic complications in acute coronary vascular events. The newer GP IIb/IIIa inhibitors, the synthetic peptide antagonists, have been shown to be more specific, to be nonimmunogenic, and to cause less bleeding. It is predictable that an oral GP IIb/IIIa inhibitor will become part of the standard repertoire in patients with unstable angina. The platelet has taken center stage in the battle against arterial thrombosis. The direction of our medical attack on acute coronary events is clear: harness the platelet.


1988 ◽  
Vol 59 (02) ◽  
pp. 225-230 ◽  
Author(s):  
J P Maffrand ◽  
A Bernat ◽  
D Delebassée ◽  
G Defreyn ◽  
J P Cazenave ◽  
...  

SummaryThe relative importance of ADP, arachidonic acid metabolites and serotonin as thrombogenic factors was evaluated in rats by comparing, after oral administration, the effects of two inhibitors of ADP-induced platelet aggregation (ticlopidine and PCR 4099), three cyclo-oxygenase inhibitors (aspirin, triflusal and indobufen) and a selective serotonin 5HT2 receptor antagonist (ketanserin) on platelet aggregation, in four platelet-dependent thrombosis models and on bleeding time. Platelet aggregation induced by ADP and collagen was completely inhibited by ticlopidine and PCR 4099 whereas only the collagen aggregation was reduced by the cyclo-oxygenase inhibitors. Ketanserin or a depletion of platelet serotonin by reserpine did not affect platelet aggregation. Ticlopidine and PCR 4099 greatly prolonged rat tail transection bleeding time. This is probably related to their known ability to inhibit ADP-mediated platelet aggregation. In contrast, the cyclooxygenase inhibitors did not affect bleeding time at all. Reserpine and ketanserin prolonged bleeding time by interfering with the action of serotonin on the vascular wall. Ticlopidine and PCR4099 were very potent antithrombotics in all the models. Aspirin, only at a high dose, inhibited poorly thrombus formation on a silk thread in an arterio-venous shunt, suggesting that the inhibition of cyclo-oxygenase was not responsible. Triflusal was inactive in all models while indobufen slightly reduced thrombus formation in the silk thread and metallic coil models. Ketanserin and reserpine reduced thrombus only in the metallic coil model. Thrombus formation was greatly reduced in fawn-hooded rats, which lack ADP in their platelet dense granules because of a genetic storage pool deficiency. Taken together, the results obtained with the drugs and with the fawn-hooded rats support the concept that ADP plays a key role in thrombogenesis in rats.


Sign in / Sign up

Export Citation Format

Share Document