scholarly journals Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests

2022 ◽  
Vol 15 (1) ◽  
pp. 90
Author(s):  
Marjan Majdinasab ◽  
Mihaela Badea ◽  
Jean Louis Marty

The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.

2019 ◽  
Author(s):  
Veeren Chauhan ◽  
Mohamed M Elsutohy ◽  
C Patrick McClure ◽  
Will Irving ◽  
Neil Roddis ◽  
...  

<p>Enteroviruses are a ubiquitous mammalian pathogen that can produce mild to life-threatening disease. Bearing this in mind, we have developed a rapid, accurate and economical point-of-care biosensor that can detect a nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and aptamers to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral RNA sequence (23 bases), which was identified through in silico screening. Aptamers were designed to demonstrate specific complementarity towards the target enteroviral RNA to produce aggregated gold-aptamer nanoconstructs. Conserved target enteroviral nucleic acid sequence (≥ 1x10<sup>-7</sup> M, ≥1.4×10<sup>-14</sup> g/mL), initiates gold-aptamer-nanoconstructs disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow-assays that utilise gold-aptamer-nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (< 60 s) and could be interpreted with a bespoke software and hardware electronic interface. We anticipate our methodology will translate in-silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave-the-way forward in the clinical evaluation of disease and complement existing strategies at overcoming antimicrobial resistance.</p>


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


2018 ◽  
Vol 941 ◽  
pp. 2522-2527
Author(s):  
Sylvio Schneider ◽  
Martina Selig ◽  
Verena Keil ◽  
Matthias Lehmann ◽  
Andreas H. Foitzik ◽  
...  

Smartphones are developing into all-purposes devices. In the present work, the employment/application of smartphones as medical devices in home care and point-of-care (POC) diagnostics are investigated in the analysis of Lateral Flow Assays (LFA). A smartphone-based LFA reader was developed for the quantitative analysis of D-Dimer – a biomarker indicating e.g. thrombotic event or danger of embolism.The proof-of-concept has been shown with multiple smartphones in establishing: (I) Optimal dimensions of the LFA cell of 72.11mm distance of smartphone to D-Dimer test leading to a coefficients of variances (CV) between 0.8% and 4.2%. (II) Inter-device investigations: CVs around 13.5%; a limit of detection (LOD) of 100ng/ml (DDU) D-Dimer. (III) Inter-smartphone investigations: CV about 16%, a limit of detection (LOD) at 66.4ng/ml (DDU). (IV) Calibrations: CV and LOD of three smartphones are comparable to the commercial available LFA reader. Further development to put the multiple smartphone-based LFA reader on the market.


2018 ◽  
Author(s):  
◽  
Christian Lungani Mthembu

This study involves the development of three-dimensional dual lateral flow diagnostic assays. These assays were fabricated with quick response (QR) barcodes to ease the accessibility and transfer test data. The assays were designed to also improve the collection and transfer of survey from point-of-care facilities to centralized laboratories, thus, these would help to speed-up response to disease out-break. The study introduces the fabrication of two barcode based malaria diagnostic in the field of diagnostics. Two lateral flow kits were modified with two QR barcodes and three QR barcodes encoded with Google analytics codes for the detection and real-time tracking of malaria lateral flow which was designed to detect Plasmodium lactate dehydrogenase (pLDH). The fabrication of test kit was achieved by attaching two and three QR barcodes into two different test kits which were encoded with websites that were linked to Google analytics website as a tracking and performance monitor. Gold nanoparticles (AuNPs) were used as a substrate, where optical and structural properties were studied using UV/Visible spectroscopy, fluorescence spectroscopy, and transmission electron microscopy (TEM). The anti-mouse IgG antibody was used as a secondary antibody to act as control and the anti-(pLDH) was stripped on the test line. Phosphate buffer was used as a mobile phase solution. The antibody binding with pLDH antigen showed red test line indicating a positive test. Two diagnostic kits for rapid detection of pLDH were developed and validated for the detection of malaria antigen with lowest detectable recombinant concentration of 10 ng.mL-1. The diagnostic kits were incorporated with two and three optimally angled QR barcodes for identifying positive and negative. The second three QR barcode embedded test kit identified positive, negative and invalid using tracked website. These QR barcodes enabled massive results and tracking with precise location of the test through Google Analytics.


2019 ◽  
Author(s):  
Veeren Chauhan ◽  
Mohamed M Elsutohy ◽  
C Patrick McClure ◽  
Will Irving ◽  
Neil Roddis ◽  
...  

<p>Enteroviruses are a ubiquitous mammalian pathogen that can produce mild to life-threatening disease. Bearing this in mind, we have developed a rapid, accurate and economical point-of-care biosensor that can detect a nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and aptamers to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral RNA sequence (23 bases), which was identified through in silico screening. Aptamers were designed to demonstrate specific complementarity towards the target enteroviral RNA to produce aggregated gold-aptamer nanoconstructs. Conserved target enteroviral nucleic acid sequence (≥ 1x10<sup>-7</sup> M, ≥1.4×10<sup>-14</sup> g/mL), initiates gold-aptamer-nanoconstructs disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow-assays that utilise gold-aptamer-nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (< 60 s) and could be interpreted with a bespoke software and hardware electronic interface. We anticipate our methodology will translate in-silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave-the-way forward in the clinical evaluation of disease and complement existing strategies at overcoming antimicrobial resistance.</p>


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1387 ◽  
Author(s):  
Chee Yew ◽  
Pedram Azari ◽  
Jane Choi ◽  
Farina Muhamad ◽  
Belinda Pingguan-Murphy

Electrospun polycaprolactone (PCL) nanofibers have emerged as a promising material in diverse biomedical applications due to their various favorable features. However, their application in the field of biosensors such as point-of-care lateral flow assays (LFA) has not been investigated. The present study demonstrates the use of electrospun PCL nanofibers as a reaction membrane for LFA. Electrospun PCL nanofibers were treated with NaOH solution for different concentrations and durations to achieve a desirable flow rate and optimum detection sensitivity in nucleic acid-based LFA. It was observed that the concentration of NaOH does not affect the physical properties of nanofibers, including average fiber diameter, average pore size and porosity. However, interestingly, a significant reduction of the water contact angle was observed due to the generation of hydroxyl and carboxyl groups on the nanofibers, which increased their hydrophilicity. The optimally treated nanofibers were able to detect synthetic Zika viral DNA (as a model analyte) sensitively with a detection limit of 0.5 nM. Collectively, the benefits such as low-cost of fabrication, ease of modification, porous nanofibrous structures and tunability of flow rate make PCL nanofibers a versatile alternative to nitrocellulose membrane in LFA applications. This material offers tremendous potential for a broad range of point-of-care applications.


Sign in / Sign up

Export Citation Format

Share Document