scholarly journals Hydrophobic Amino Acid Tryptophan Shows Promise as a Potential Absorption Enhancer for Oral Delivery of Biopharmaceuticals

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 182 ◽  
Author(s):  
Noriyasu Kamei ◽  
Hideyuki Tamiwa ◽  
Mari Miyata ◽  
Yuta Haruna ◽  
Koyo Matsumura ◽  
...  

Cell-penetrating peptides (CPPs) have great potential to efficiently deliver drug cargos across cell membranes without cytotoxicity. Cationic arginine and hydrophobic tryptophan have been reported to be key component amino acids for cellular internalization of CPPs. We recently found that l-arginine could increase the oral delivery of insulin in its single amino acid form. Therefore, in the present study, we evaluated the ability of another key amino acid, tryptophan, to enhance the intestinal absorption of biopharmaceuticals. We demonstrated that co-administration with l-tryptophan significantly facilitated the oral and intestinal absorption of the peptide drug insulin administered to rats. Furthermore, l-tryptophan exhibited the ability to greatly enhance the intestinal absorption of other peptide drugs such as glucagon-like peptide-1 (GLP-1), its analog Exendin-4 and macromolecular hydrophilic dextrans with molecular weights ranging from 4000 to 70,000 g/mol. However, no intermolecular interaction between insulin and l-tryptophan was observed and no toxic alterations to epithelial cellular integrity—such as changes to cell membranes, cell viability, or paracellular tight junctions—were found. This suggests that yet to be discovered inherent biological mechanisms are involved in the stimulation of insulin absorption by co-administration with l-tryptophan. These results are the first to demonstrate the significant potential of using the single amino acid l-tryptophan as an effective and versatile bioavailability enhancer for the oral delivery of biopharmaceuticals.

2021 ◽  
Author(s):  
Yingwei Chen ◽  
Yanan He ◽  
Biao Ruan ◽  
Eun Jung Choi ◽  
Yihong Chen ◽  
...  

We have engineered switches between the three most common small folds, 3a, 4b+a, and a/b plait, referred to here as A, B, and S, respectively. Mutations were introduced into the natural S protein until sequences were created that have a stable S-fold in their longer (~90 amino acid) form and have an alternative fold (either A or B) in their shorter (56 amino acid) form. Five sequence pairs were designed and key structures were determined using NMR spectroscopy. Each protein pair is 100% identical in the 56 amino acid region of overlap. Several rules for engineering switches emerged. First, designing one sequence with good native state interactions in two folds requires care but is feasible. Once this condition is met, fold populations are determined by the stability of the embedded A- or B-fold relative to the S-fold and the conformational propensities of the ends that are generated in the switch to the embedded fold. If the stabilities of the embedded fold and the longer fold are similar, conformation is highly sensitive to mutation so that even a single amino acid substitution can radically shift the population to the alternative fold. The results provide insight into why dimorphic sequences can be engineered and sometimes exist in nature, while most natural protein sequences populate single folds. Proteins may evolve toward unique folds because dimorphic sequences generate interactions that destabilize and can produce aberrant functions. Thus two-state behavior may result from nature's negative design rather than being an inherent property of the folding code.


Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


Sign in / Sign up

Export Citation Format

Share Document