scholarly journals Rules for designing protein fold switches and their implications for the folding code

2021 ◽  
Author(s):  
Yingwei Chen ◽  
Yanan He ◽  
Biao Ruan ◽  
Eun Jung Choi ◽  
Yihong Chen ◽  
...  

We have engineered switches between the three most common small folds, 3a, 4b+a, and a/b plait, referred to here as A, B, and S, respectively. Mutations were introduced into the natural S protein until sequences were created that have a stable S-fold in their longer (~90 amino acid) form and have an alternative fold (either A or B) in their shorter (56 amino acid) form. Five sequence pairs were designed and key structures were determined using NMR spectroscopy. Each protein pair is 100% identical in the 56 amino acid region of overlap. Several rules for engineering switches emerged. First, designing one sequence with good native state interactions in two folds requires care but is feasible. Once this condition is met, fold populations are determined by the stability of the embedded A- or B-fold relative to the S-fold and the conformational propensities of the ends that are generated in the switch to the embedded fold. If the stabilities of the embedded fold and the longer fold are similar, conformation is highly sensitive to mutation so that even a single amino acid substitution can radically shift the population to the alternative fold. The results provide insight into why dimorphic sequences can be engineered and sometimes exist in nature, while most natural protein sequences populate single folds. Proteins may evolve toward unique folds because dimorphic sequences generate interactions that destabilize and can produce aberrant functions. Thus two-state behavior may result from nature's negative design rather than being an inherent property of the folding code.

2008 ◽  
Vol 82 (9) ◽  
pp. 4449-4460 ◽  
Author(s):  
Jian Zhou ◽  
Gary W. Blissard

ABSTRACT Enveloped virus entry into host cells is typically initiated by an interaction between a viral envelope glycoprotein and a host cell receptor. For budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, the envelope glycoprotein GP64 is involved in host cell receptor binding, and GP64 is sufficient to mediate low-pH-triggered membrane fusion. To better define the role of GP64 in receptor binding, we generated and characterized a panel of antisera against subdomains of GP64. Eight subdomain-specific antisera were generated, and their reactivities with GP64 proteins and neutralization of virus infectivity and binding were examined. Antibodies directed against the N-terminal region of GP64 (amino acids 21 to 159) showed strong neutralization of infectivity and effectively inhibited binding of 35S-labeled budded virions to Sf9 cells. In addition, we generated virions displaying truncated GP64 constructs. A construct displaying the N-terminal 274 amino acids (residues 21 to 294) of the ectodomain was sufficient to mediate virion binding. Additional studies of antisera directed against small subdomains revealed that an antiserum against a 40-amino-acid region (residues 121 to 160) neutralized virus infectivity. Site-directed mutagenesis was subsequently used for functional analysis of that region. Recombinant viruses expressing GP64 proteins with single amino acid substitutions within amino acids 120 to 124 and 142 to 148 replicated to high titers, suggesting that those amino acids were not critical for receptor binding or other important GP64 functions. In contrast, GP64 proteins with single amino acid substitutions of residues 153 and 156 were unable to substitute for wild-type GP64 and did not rescue a gp64 knockout virus. Further analysis showed that these substitutions substantially reduced binding of recombinant virus to Sf9 cells. Thus, the amino acid region from positions 21 to 159 was identified as a putative receptor binding domain, and amino acids 153 and 156 appear to be important for receptor binding.


FEBS Letters ◽  
2000 ◽  
Vol 470 (2) ◽  
pp. 135-138 ◽  
Author(s):  
H. Vais ◽  
S. Atkinson ◽  
N. Eldursi ◽  
A.L. Devonshire ◽  
M.S. Williamson ◽  
...  

2015 ◽  
Vol 90 (2) ◽  
pp. 636-649 ◽  
Author(s):  
Susan Zolla-Pazner ◽  
Sandra Sharpe Cohen ◽  
David Boyd ◽  
Xiang-Peng Kong ◽  
Michael Seaman ◽  
...  

ABSTRACTAntibodies (Abs) specific for the V3 loop of the HIV-1 gp120 envelope neutralize most tier 1 and many tier 2 viruses and are present in essentially all HIV-infected individuals as well as immunized humans and animals. Vaccine-induced V3 Abs are associated with reduced HIV infection rates in humans and affect the nature of transmitted viruses in infected vaccinees, despite the fact that V3 is often occluded in the envelope trimer. Here, we link structural and experimental data showing how conformational alterations of the envelope trimer render viruses exceptionally sensitive to V3 Abs. The experiments interrogated the neutralization sensitivity of pseudoviruses with single amino acid mutations in various regions of gp120 that were predicted to alter packing of the V3 loop in the Env trimer. The results indicate that the V3 loop is metastable in the envelope trimer on the virion surface, flickering between states in which V3 is either occluded or available for binding to chemokine receptors (leading to infection) and to V3 Abs (leading to virus neutralization). The spring-loaded V3 in the envelope trimer is easily released by disruption of the stability of the V3 pocket in the unliganded trimer or disruption of favorable V3/pocket interactions. Formation of the V3 pocket requires appropriate positioning of the V1V2 domain, which is, in turn, dependent on the conformation of the bridging sheet and on the stability of the V1V2 B-C strand-connecting loop.IMPORTANCEThe levels of antibodies to the third variable region (V3) of the HIV envelope protein correlate with reduced HIV infection rates. Previous studies showed that V3 is often occluded, as it sits in a pocket of the envelope trimer on the surface of virions; however, the trimer is flexible, allowing occluded portions of the envelope (like V3) to flicker into an exposed position that binds antibodies. Here we provide a systematic interrogation of mechanisms by which single amino acid changes in various regions of gp120 (i) render viruses sensitive to neutralization by V3 antibodies, (ii) result in altered packing of the V3 loop, and (iii) activate an open conformation that exposes V3 to the effects of V3 Abs. Taken together, these and previous studies explain how V3 antibodies can protect against HIV-1 infection and why they should be one of the targets of vaccine-induced antibodies.


2000 ◽  
Vol 182 (16) ◽  
pp. 4628-4631 ◽  
Author(s):  
Mio Ohnuma ◽  
Nobuyuki Fujita ◽  
Akira Ishihama ◽  
Kan Tanaka ◽  
Hideo Takahashi

ABSTRACT ς38 (or ςS, the rpoS gene product) is a sigma subunit of RNA polymerase in Escherichia coli and directs transcription from a number of stationary-phase promoters as well as osmotically inducible promoters. In this study, we analyzed the function of the carboxy-terminal 16-amino-acid region of ς38 (residues 315 to 330), which is well conserved among the rpoS gene products of enteric bacterial species. Truncation of this region was shown to result in the loss of sigma activity in vivo using promoter-lacZ fusion constructs, but the mutant ς38 retained the binding activity in vivo to the core enzyme. The in vitro transcription analysis revealed that the transcription activity of ς38 holoenzyme under high potassium glutamate concentrations was significantly decreased by the truncation of the carboxy-terminal tail element.


1985 ◽  
Vol 63 (9) ◽  
pp. 2411-2419 ◽  
Author(s):  
Helen Elaine Howard-Lock ◽  
Colin James Lyne Lock ◽  
Philip Stuart Smalley

The X-ray crystal structure of (S)-2,2,5,5-tetramethylthiazolidine-4-carboxylic acid, 1, has been determined. Crystals are monoclinic, P21, with cell dimensions a = 11.351(4) b = 8.303(2), c = 11.969(3) Å, β = 116.69(2)°, and Z = 4. The structure was solved by standard methods and refined to R1 = 0.0774, R2 = 0.0670 for 2388 independent reflections. Compound 1 exists in the amino-acid form as shown by two distinctly different C—O bond lengths, 1.209 and 1.309 Å, typical of the COOH group, and by the positions of the hydrogen atoms. The amino-acid form of 1 found in the solid also exists in solution as shown by infrared and Raman spectra. The mass spectra, and 1H and 13C nmr spectra are reported, as well as detailed infrared and Raman spectra for the title compound and several deuterated species.


1994 ◽  
Vol 14 (4) ◽  
pp. 2755-2766 ◽  
Author(s):  
D G Overdier ◽  
A Porcella ◽  
R H Costa

Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (HNF-3 alpha, -3 beta, and -3 gamma) are known to regulate the transcription of liver-specific genes. The HNF-3 proteins bind to DNA as a monomer through a modified helix-turn-helix, known as the winged helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic forkhead (fkh) protein. We have previously described the isolation, from rodent tissue, of an extensive family of tissue-specific HNF-3/fkh homolog (HFH) genes sharing homology in their winged helix motifs. In this report, we have determined the preferred DNA-binding consensus sequence for the HNF-3 beta protein as well as for two divergent family members, HFH-1 and HFH-2. We show that these HNF-3/fkh proteins bind to distinct DNA sites and that the specificity of protein recognition is dependent on subtle nucleotide alterations in the site. The HNF-3, HFH-1, and HFH-2 consensus binding sequences were also used to search DNA regulatory regions to identify potential target genes. Furthermore, an analysis of the DNA-binding properties of a series of HFH-1/HNF-3 beta protein chimeras has allowed us to identify a 20-amino-acid region, located adjacent to the DNA recognition helix, which contributes to DNA-binding specificity. These sequences are not involved in base-specific contacts and include residues which diverge within the HNF-3/fkh family. Replacement of this 20-amino-acid region in HNF-3 beta with corresponding residues from HFH-1 enabled the HNF-3 beta recognition helix to bind only HFH-1-specific DNA-binding sites. We propose a model in which this 20-amino-acid flanking region influences the DNA-binding properties of the recognition helix.


Sign in / Sign up

Export Citation Format

Share Document