scholarly journals Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 419 ◽  
Author(s):  
Jingyi Liu ◽  
Changling Du ◽  
Henry T. Beaman ◽  
Mary Beth B. Monroe

Plant-derived phenolic acids (PAs) are small molecules with antimicrobial, antioxidant, anti-inflammatory, and pro-coagulant properties. Their chemistry enables facile potential incorporation into biomaterial scaffolds to provide naturally-derived functionalities that could improve healing outcomes. While PAs have been previously characterized, their structure-property relationships in terms of antioxidant and antimicrobial properties are not well-understood, particularly in the context of their use in medical applications. To that end, a library of PAs with varied pendant groups was characterized here. It was found that increasing the number of radical-scavenging hydroxyl and methoxy groups on PAs increased antioxidant properties. All PAs showed some antimicrobial activity against the selected bacteria strains (Escherichia coli, Staphylococcus epidermidis (native and drug-resistant), and Staphylococcus aureus (native and drug-resistant)) at concentrations that are feasible for incorporation into polymeric biomaterials. In general, a trend of slightly decreased antimicrobial efficacy with increased number of pendant hydroxyl and methoxy groups was observed. The carboxylic acid group of a selection of PAs was modified with a polyurethane monomer analog. Modification did not greatly affect antioxidant or antimicrobial properties in comparison to unmodified controls, indicating that the carboxylic acid group of PAs can be altered without losing functionality. These results could be utilized for rational selection of phenolic moieties for use as therapeutics on their own or as part of a biomaterial scaffold with desired healing outcomes.

Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


2006 ◽  
Vol 62 (7) ◽  
pp. o2751-o2752 ◽  
Author(s):  
Ting Sun ◽  
Jian-Ping Ma ◽  
Ru-Qi Huang ◽  
Yu-Bin Dong

In the title compound, C10H7N3O4·H2O, one carboxyl group is deprotonated and the pyridyl group is protonated. The inner salt molecule has a planar structure, apart from the carboxylic acid group, which is tilted from the imidazole plane by a small dihedral angle of 7.3 (3)°.


2014 ◽  
Vol 70 (12) ◽  
pp. o1242-o1243 ◽  
Author(s):  
Wei Tang ◽  
Neng-Hua Chen ◽  
Guo-Qiang Li ◽  
Guo-Cai Wang ◽  
Yao-Lan Li

The title compound [systematic name: 3β-hydroxylup-20(29)-en-28-oic acid methanol monosolvate], C30H48O3·CH3OH, is a solvent pseudopolymorph of a naturally occurring plant-derived lupane-type pentacyclic triterpenoid, which was isolated from the traditional Chinese medicinal plantSyzygium jambos(L.) Alston. The dihedral angle between the planes of the carboxylic acid group and the olefinic group is 12.17 (18)°. TheA/B,B/C,C/DandD/Ering junctions are alltrans-fused. In the crystal, O—H...O hydrogen bonds involving the hydroxy and carboxylic acid groups and the methanol solvent molecule give rise to a two-dimensional network structure lying parallel to (001).


2012 ◽  
Vol 13 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Dongho Kim ◽  
Yoomi Yoon ◽  
Ildoo Chung ◽  
Chanyoung Park ◽  
Jongwoo Bae ◽  
...  

Author(s):  
Vinod Kumar Gurjar

Abstract: The extremely drug resistant may be a worldwide public ill health in recent years. Molecules with newer targets and an alternate mechanism of action is an urgent requirement of improvement of latest drugs. The utilization of heterocyclic compounds has been increased dramatically over the last 70 years due to their wide selection of technical applications and their favorable environmental and toxicological properties The 1,8-naphthyridine and quinoline 3-carboxylic acid derivatives that we'll manufacture during this method will change the potency and specificity of fluoroquinolones. Taking under consideration the findings, the goal is to style and manufacture 1, 8-naphthyridine and quinoline 3-carboxylic acid derivatives. The synthesized compounds are going to be characterized using multiple analytical techniques, virtual screening, and in-silico ADME/T prediction. Keywords: 1, 8-Naphthyridine, Quinoline, ADMET, Heterocyclic Compound


2017 ◽  
Vol 19 (46) ◽  
pp. 31345-31351 ◽  
Author(s):  
Juan Ramón Avilés-Moreno ◽  
Giel Berden ◽  
Jos Oomens ◽  
Bruno Martínez-Haya

Protonated arginine interacts with 12-crown-4 through the guanidinium side group. In the complex with the N-substituted analog cyclen, the dominant conformation is the result of the proton transfer from the carboxylic acid group of the amino acid to the macrocycle.


2011 ◽  
Vol 100B (2) ◽  
pp. 569-576 ◽  
Author(s):  
Jonggu Park ◽  
Qiang Ye ◽  
Viraj Singh ◽  
Sarah L. Kieweg ◽  
Anil Misra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document