scholarly journals Electrospun Bioactive Wound Dressing Containing Colloidal Dispersions of Birch Bark Dry Extract

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 770 ◽  
Author(s):  
Francis Kamau Mwiiri ◽  
Johanna M. Brandner ◽  
Rolf Daniels

Novel birch bark dry extract (TE)-loaded polyvinyl alcohol (PVA) fiber mats intended for wound therapy were developed through an electrospinning process. Colloidal dispersions containing TE as the active substance were prepared by the high-pressure homogenization (HPH) technique using hydrogenated phospholipids as stabilizer. Subsequently, the colloidal dispersions were blended with aqueous PVA solutions in the ratio of 60:40 (wt.%) and electrospun to form the nanofiber mats. Fiber morphology examined using scanning electron microscopy (SEM) indicated that fibers were uniform and achieved diameters in the size range of 300–1586 nm. Confocal Raman spectral imaging gave good evidence that triterpenes were encapsulated within the electrospun mats. In vitro drug release and ex vivo permeation studies indicated that the electrospun nanofibers showed a sustained release of betulin, the main component of birch bark dry extract, making the examined dressings highly applicable for several wound care applications. Ex vivo wound healing studies proved that electrospun fiber mats containing TE accelerated wound healing significantly more than TE oleogel, which was comparable to an authorized product that consists of TE and sunflower oil and has proved to enhance wound healing. Therefore, our results conclude that the developed TE-PVA-based dressings show promising potential for wound therapy, an area where effective remedy is needed.

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4799
Author(s):  
Francis Kamau Mwiiri ◽  
Rolf Daniels

Triterpenes from the outer bark of birch (TE) are known for various pharmacological effects including enhanced wound healing. Apart from an already authorized oleogel, electrospun nanofiber mats containing these triterpenes in a polyvinyl alcohol (PVA) matrix appear to be an advantageous application form. The effects of PVA molecular weight and concentration on the fiber morphology have been investigated. Three different molecular weights of PVA ranging from 67 to 186 kDa were used. The concentration of PVA was varied from 5 to 20 wt%. Polymer solutions were blended with colloidal dispersions of birch bark extract at a weight ratio of 60:40 (wt.%). The estimated viscosity of polymer solutions was directly linked to their concentration and molecular weight. In addition, both pure and blended solutions showed viscoelastic properties with a dominant viscous response in the bulk. Fiber morphology was confirmed using scanning electron microscopy (SEM). Both polymer concentration and molecular weight were found to be significant factors affecting the diameter of the fibers. Fiber diameter increased with a higher molecular weight and polymer concentration as more uniform fibers were obtained using PVA of higher molecular weight (146–186 kDa). In vitro drug release and ex vivo permeation studies indicated a faster drug release of betulin from electrospun scaffolds with lower PVA molecular weight. Our research suggests that the fabricated TE-loaded PVA electrospun dressings represent potential delivery systems of TE for wound care applications.


2020 ◽  
Author(s):  
Afshin Fathi ◽  
Mehdi Khanmohammadi ◽  
Arash Goodarzi ◽  
Lale Foroutani ◽  
Zahra Taherian Mobarakeh ◽  
...  

Abstract Hybrid fibrous mat containing cell interactive molecules offers the ability to deliver the cells and drugs in wound bed, which will help to achieve a high therapeutic treatment. In this study, a co-electrospun hybrid of polyvinyl alcohol (PVA), chitosan (Ch) and silk fibrous mat was developed and their wound healing potential by localizing bone marrow mesenchymal stem cells (MSCs)-derived keratinocytes on it was evaluated in vitro and in vivo. It was expected that fabricated hybrid construct could promote wound healing due to its structure, physical, biological specifications. The fabricated fibrous mats were characterized for their structural, mechanical and biochemical properties. The shape uniformity and pore size of fibers showed smooth and homogenous structures of them. Fourier transform infrared spectroscopy (FTIR) verified all typical absorption characteristics of Ch-PVA + Silk polymers as well as Ch-PVA or pure PVA substrates. The contact angle and wettability measurement of fibers showed that mats found moderate hydrophilicity by addition of Ch and silk substrates compared with PVA alone. The mechanical features of Ch-PVA + Silk fibrous mat increase significantly through co-electrospun process as well as hybridization of these synthetic and natural polymers. Higher degrees of cellular attachment and proliferation obtained on Ch-PVA + Silk fibers compared with PVA and Ch-PVA fibers. In terms of the capability of Ch-PVA + Silk fibers and MSC-derived keratinocytes, histological analysis and skin regeneration results showed this novel fibrous construct could be suggested as a skin substitute in the repair of injured skin and regenerative medicine applications.


2017 ◽  
Vol 101 ◽  
pp. 569-579 ◽  
Author(s):  
Lydia Thomas ◽  
Foziyah Zakir ◽  
Mohd. Aamir Mirza ◽  
Md. Khalid Anwer ◽  
Farhan Jalees Ahmad ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 991
Author(s):  
Francis Kamau Mwiiri ◽  
Johanna M. Brandner ◽  
Rolf Daniels

The authors wish to make the following correction to this paper [...]


2020 ◽  
Vol 11 (1) ◽  
pp. 204-204
Author(s):  
Solmaz Ghaffari ◽  
Faezeh Alihosseini ◽  
Seyed Mahdi Rezayat Sorkhabadi ◽  
Sepideh Arbabi Bidgoli ◽  
Seyyedeh Elaheh Mousavi ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Afshin Fathi ◽  
Mehdi Khanmohammadi ◽  
Arash Goodarzi ◽  
Lale Foroutani ◽  
Zahra Taherian Mobarakeh ◽  
...  

AbstractHybrid fibrous mat containing cell interactive molecules offers the ability to deliver the cells and drugs in wound bed, which will help to achieve a high therapeutic treatment. In this study, a co-electrospun hybrid of polyvinyl alcohol (PVA), chitosan (Ch) and silk fibrous mat was developed and their wound healing potential by localizing bone marrow mesenchymal stem cells (MSCs)-derived keratinocytes on it was evaluated in vitro and in vivo. It was expected that fabricated hybrid construct could promote wound healing due to its structure, physical, biological specifications. The fabricated fibrous mats were characterized for their structural, mechanical and biochemical properties. The shape uniformity and pore size of fibers showed smooth and homogenous structures of them. Fourier transform infrared spectroscopy (FTIR) verified all typical absorption characteristics of Ch-PVA + Silk polymers as well as Ch-PVA or pure PVA substrates. The contact angle and wettability measurement of fibers showed that mats found moderate hydrophilicity by addition of Ch and silk substrates compared with PVA alone. The mechanical features of Ch-PVA + Silk fibrous mat increase significantly through co-electrospun process as well as hybridization of these synthetic and natural polymers. Higher degrees of cellular attachment and proliferation obtained on Ch-PVA + Silk fibers compared with PVA and Ch-PVA fibers. In terms of the capability of Ch-PVA + Silk fibers and MSC-derived keratinocytes, histological analysis and skin regeneration results showed this novel fibrous construct could be suggested as a skin substitute in the repair of injured skin and regenerative medicine applications.


Nanomedicine ◽  
2019 ◽  
Vol 14 (22) ◽  
pp. 2909-2923 ◽  
Author(s):  
Shuaihua Li ◽  
Qiyu Tang ◽  
Hongbo Xu ◽  
Qiangru Huang ◽  
Zi Wen ◽  
...  

Aim: Diabetic wound healing is seriously interrupted, and administration of KGF for wound treatment is restricted by its inherent instability. We aim to develop an ideal way toward KGF stabilization, thus improving diabetic wound healing. Materials & methods: We conjugated KGF with gold nanoparticles (GNPs) and determined the stability and binding affinity. Biological effects of conjugates (KGF-GNPs) were evaluated in vitro and in an animal model. Results: KGF-GNPs revealed high stability under hostile circumstances because of the preserved secondary structure and possessed elevated binding affinity to KGF receptor. Moreover, application of KGF-GNPs contributed to accelerated wound recovery in diabetic rats, including re-epithelialization and contraction. Conclusion: KGF-GNPs were promising for future clinical application for diabetic wound therapy.


Sign in / Sign up

Export Citation Format

Share Document