scholarly journals Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1004
Author(s):  
Patricia Álamo ◽  
Victor Pallarès ◽  
María Virtudes Céspedes ◽  
Aïda Falgàs ◽  
Julieta M. Sanchez ◽  
...  

Fluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6). The biodistribution of labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles has been then compared to that of the non-labeled nanoparticle in different CXCR4+ tumor mouse models. We observed that while parental T22-GFP-H6 nanoparticles accumulated mostly and specifically in CXCR4+ tumor cells, labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles showed a dramatic change in the biodistribution pattern, accumulating in non-target organs such as liver or kidney while reducing tumor targeting capacity. Therefore, the use of such labeling molecules should be avoided in target and non-target tissue uptake studies during the design and development of targeted nanoscale drug delivery systems, since their effect over the fate of the nanomaterial can lead to considerable miss-interpretations of the actual nanoparticle biodistribution.

2019 ◽  
Vol 160 ◽  
pp. 336-343 ◽  
Author(s):  
Vadim V. Annenkov ◽  
Stanislav N. Zelinskiy ◽  
Viktor A. Pal'shin ◽  
Lyudmila I. Larina ◽  
Elena N. Danilovtseva

1977 ◽  
Vol 75 (1) ◽  
pp. 173-174 ◽  
Author(s):  
VERONICA A. CERNY

Laboratory of Anatomy, Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A. (Received 28 March 1977) Testosterones have stimulatory effects on peripheral target tissue and sexual behaviour in male and female rats (Beach, 1942), guinea-pigs (Young, 1961; Diamond & Young, 1963), rabbits (Palka & Sawyer, 1966; Beyer & Rivaud, 1973) and cats (Green, Clemente & de Groot, 1957; Young, 1961; Whalen & Hardy, 1970). 5α-Androstan-17β-ol-3-one (dihydrotestosterone, DHT) has stimulatory effects on peripheral target organs, and like testosterones, a negative feedback effect on the pituitary gland and hypothalamus (Feder, 1971). No behavioural effects were seen in male or female rats when DHT was injected systemically (Beyer, Morali & Cruz, 1971; Feder, 1971) nor in the male rat when it was administered intracerebrally (Johnston & Davidson, 1972). Many experiments support the hypothesis that only androgens that can be aromatized to oestrogens can elicit sexual behaviour and


2020 ◽  
Vol 21 (24) ◽  
pp. 9573
Author(s):  
Ana Rodríguez-Ramos ◽  
Laura Marín-Caba ◽  
Nerea Iturrioz-Rodríguez ◽  
Esperanza Padín-González ◽  
Lorena García-Hevia ◽  
...  

There are many nanoencapsulation systems available today. Among all these, mesoporous silica particles (MSPs) have received great attention in the last few years. Their large surface-to-volume ratio, biocompatibility, and versatility allow the encapsulation of a wide variety of drugs inside their pores. However, their chemical instability in biological fluids is a handicap to program the precise release of the therapeutic compounds. Taking advantage of the dissolving capacity of silica, in this study, we generate hollow capsules using MSPs as transitory sacrificial templates. We show how, upon MSP coating with different polyelectrolytes or proteins, fully customized hollow shells can be produced. These capsules are biocompatible, flexible, and biodegradable, and can be decorated with nanoparticles or carbon nanotubes to endow the systems with supplementary intrinsic properties. We also fill the capsules with a fluorescent dye to demonstrate intracellular compound release. Finally, we document how fluorescent polymeric capsules are engulfed by cells, releasing their encapsulated agent during the first 96 h. In summary, here, we describe how to assemble a highly versatile encapsulation structure based on silica mesoporous cores that are completely removed from the final polymeric capsule system. These drug encapsulation systems are highly customizable and have great versatility as they can be made using silica cores of different sizes and multiple coatings. This provides capsules with unique programmable attributes that are fully customizable according to the specific needs of each disease or target tissue for the development of nanocarriers in personalized medicine.


2020 ◽  
Vol 20 (5) ◽  
pp. 3195-3200 ◽  
Author(s):  
Jian Wu ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Tao Chen

Surface-enhanced fluorescence detection has large potential for detecting many chemical and biological trace analytes. This paper presents a novel method for preparing silver nanomaterials in microfluidic chip channels for the surface-enhanced fluorescence detection of fluorescent dye (SYBR Green I) molecules. Microfluidic chip channels were fabricated by a 248-nm excimer laser. Silver nanoparticles (Ag-NPs) were prepared inside the microfluidic chip channels by directly heating the silver precursor solution. The influence of different temperatures on the sizes of the silver nanoparticles was studied. Then, the surface-enhanced fluorescence technology based on the microfluidic system was used to detect the fluorescent dye molecules. As a result, the fluorescence signal of the fluorescent dye molecules was significantly enhanced by the silver nanoparticles. In addition, the effect of particle size on the fluorescence signal was studied. This simple and fast method is suitable for a fluorescent PCR (polymerase chain reaction) system and has good application prospects for detecting harmful microorganisms in a spacecraft.


2014 ◽  
Vol 43 (48) ◽  
pp. 17893-17898 ◽  
Author(s):  
Yanfeng Yue ◽  
Andrew J. Binder ◽  
Ruijing Song ◽  
Yuanjing Cui ◽  
Jihua Chen ◽  
...  

A perturbation assisted nanofusion technique to construct hierarchically superstructured MOFs was reported. In particular, the mesopores in the MOF structure enabled the confinement of large dye species, resulting in fluorescent dye@MOF composite materials.


2008 ◽  
Vol 41 (16) ◽  
pp. 6191-6194 ◽  
Author(s):  
Christopher A. Grabowski ◽  
Ashis Mukhopadhyay

Sign in / Sign up

Export Citation Format

Share Document