scholarly journals Comparison of Downstream Processing of Nanocrystalline Solid Dispersion and Nanosuspension of Diclofenac Acid to Develop Solid Oral Dosage Form

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1015
Author(s):  
Sanika Jadhav ◽  
Amanpreet Kaur ◽  
Arvind Kumar Bansal

The conventional “top-down”, “bottom-up” and “combination” approaches of generating drug nanocrystals produce a “nanosuspension” (NS). It requires significant downstream processing for drying the liquid by suitable means followed by its granulation to develop an oral solid dosage form (OSD). In this paper, we used a novel, spray drying-based NanoCrySP technology for the generation of drug nanocrystals in the form of nanocrystalline solid dispersion (NCSD). We hypothesized that the NCSD would require minimal downstream processing since the nanocrystals are obtained in powder form during spray drying. We further compared downstream processing of NS and NCSD of diclofenac acid (DCF) prepared by wet media milling and NanoCrySP technology, respectively. The NS and NCSD were characterized for crystallinity, crystal size, assay and dissolution. The NCSD was physically mixed with 0.3% Aerosil® 200, 1.76% croscarmellose sodium (CCS) and 0.4% sodium stearyl fumarate (SSF) and filled into size 0 hard gelatin capsules. The NS was first wet granulated using Pearlitol® SD 200 (G1 granules) and Celphere® 203 (G2 granules) in a fluidized bed processor, and the resulting granules were mixed using the same extra granular excipients as NCSD and filled into capsules. A discriminatory dissolution method was developed to monitor changes in dissolution behavior due to crystal growth during processing. Cost analysis and comparison of process efficiency was performed using an innovation radar tool. The NS and NCSD were successfully fabricated with a crystal size of 363 ± 21.87 and 361.61 ± 11.78, respectively. In comparison to NCSD-based capsules (65.13%), the G1 and G2 granules showed crystal growth and decrease in dissolution to 52.68% and 48.37%, respectively, in 120 min. The overall cost for downstream processing of NCSD was up to 80% lower than that of NS. An innovation radar tool also concluded that the one-step NanoCrySP technology was more efficient and required less downstream processing than the two-step wet media milling approach for conversion of nanocrystals to OSD.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jieyu Zuo ◽  
Yuan Gao ◽  
Nadia Bou-Chacra ◽  
Raimar Löbenberg

When a new oral dosage form is developed, its dissolution behavior must be quantitatively analyzed. Dissolution analysis involves a comparison of the dissolution profiles and the application of mathematical models to describe the drug release pattern. This report aims to assess the application of the DDSolver, an Excel add-in software package, which is designed to analyze data obtained from dissolution experiments. The data used in this report were chosen from two dissolution studies. The results of the DDSolver analysis were compared with those obtained using an Excel worksheet. The comparisons among three different products obtained similarity factors(f2)of 23.21, 46.66, and 17.91 using both DDSolver and the Excel worksheet. The results differed when DDSolver and Excel were used to calculate the release exponent “n” in the Korsmeyer-Peppas model. Performing routine quantitative analysis proved to be much easier using the DDSolver program than an Excel spreadsheet. The use of the DDSolver program reduced the calculation time and has the potential to omit calculation errors, thus making this software package a convenient tool for dissolution comparison.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Eun-Sol Ha ◽  
Du Hyung Choi ◽  
In-hwan Baek ◽  
Heejun Park ◽  
Min-Soo Kim

In this study, we designed amorphous solid dispersions based on Eudragit E/HCl (neutralized Eudragit E using hydrochloric acid) to maximize the dissolution of trans-resveratrol. Solid-state characterization of amorphous solid dispersions of trans-resveratrol was performed using powder X-ray diffraction, scanning electron microscopy, and particle size measurements. In addition, an in vitro dissolution study and an in vivo pharmacokinetic study in rats were carried out. Among the tested polymers, Eudragit E/HCl was the most effective solid dispersion for the solubilization of trans-resveratrol. Eudragit E/HCl significantly inhibited the precipitation of trans-resveratrol in a pH 1.2 dissolution medium in a dose-dependent manner. The amorphous Eudragit E/HCl solid dispersion at a trans-resveratrol/polymer ratio of 10/90 exhibited a high degree of supersaturation without trans-resveratrol precipitation for at least 48 h by the formation of Eudragit E/HCl micelles. In rats, the absolute oral bioavailability (F%) of trans-resveratrol from Eudragit E/HCl solid dispersion (10/90) was estimated to be 40%. Therefore, trans-resveratrol-loaded Eudragit E/HCl solid dispersions prepared by spray drying offer a promising formulation strategy with high oral bioavailability for developing high-quality health supplements, nutraceutical, and pharmaceutical products.


2004 ◽  
Vol 141 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Hirofumi Takeuchi ◽  
Shinsuke Nagira ◽  
Hiromitsu Yamamoto ◽  
Yoshiaki Kawashima

Sign in / Sign up

Export Citation Format

Share Document