scholarly journals Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1051
Author(s):  
Eduardo Martínez-Molina ◽  
Carlos Chocarro-Wrona ◽  
Daniel Martínez-Moreno ◽  
Juan A. Marchal ◽  
Houria Boulaiz

Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.

2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2008 ◽  
Vol 3 (2) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Zoubida Charrouf ◽  
Dominique Guillaume

For years, in southwestern Morocco, the decline of the argan forest has been accompanied by the concomitant desert encroachment. Preservation of this forest by increasing the economic value of argan tree was proposed twenty years ago, but successful large scale production of certified, high quality argan oil, an edible oil introduced as a functional food, has only been recently achieved. Argan oil is now marketed in most developed countries, despite its elevated price, and protection of the argan forest is now seriously being considered. The aim of this work is to present the recent progress made in argan oil production, the ways explored to commercialize the oil extraction by-products, and recent attempts to use other argan tree parts as part of a long term aim to preserve the argan forest.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 411 ◽  
Author(s):  
Daniela Lisini ◽  
Sara Nava ◽  
Simona Frigerio ◽  
Simona Pogliani ◽  
Guido Maronati ◽  
...  

Mesenchymal stromal cells (MSCs) prepared as advanced therapies medicinal products (ATMPs) have been widely used for the treatment of different diseases. The latest developments concern the possibility to use MSCs as carrier of molecules, including chemotherapeutic drugs. Taking advantage of their intrinsic homing feature, MSCs may improve drugs localization in the disease area. However, for cell therapy applications, a significant number of MSCs loaded with the drug is required. We here investigate the possibility to produce a large amount of Good Manufacturing Practice (GMP)-compliant MSCs loaded with the chemotherapeutic drug Paclitaxel (MSCs-PTX), using a closed bioreactor system. Cells were obtained starting from 13 adipose tissue lipoaspirates. All samples were characterized in terms of number/viability, morphology, growth kinetics, and immunophenotype. The ability of MSCs to internalize PTX as well as the antiproliferative activity of the MSCs-PTX in vitro was also assessed. The results demonstrate that our approach allows a large scale expansion of cells within a week; the MSCs-PTX, despite a different morphology from MSCs, displayed the typical features of MSCs in terms of viability, adhesion capacity, and phenotype. In addition, MSCs showed the ability to internalize PTX and finally to kill cancer cells, inhibiting the proliferation of tumor lines in vitro. In summary our results demonstrate for the first time that it is possible to obtain, in a short time, large amounts of MSCs loaded with PTX to be used in clinical trials for the treatment of patients with oncological diseases.


2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Katharina B. Lauer ◽  
Ray Borrow ◽  
Thomas J. Blanchard

ABSTRACT The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors—proven safe and successful in veterinary vaccine applications—are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Thomas Moreau ◽  
Amanda L. Evans ◽  
Louella Vasquez ◽  
Marloes R. Tijssen ◽  
Ying Yan ◽  
...  

Abstract The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.


Sign in / Sign up

Export Citation Format

Share Document