scholarly journals Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Charlotte A. René ◽  
Robin J. Parks

The central nervous system (CNS) is surrounded by the blood–brain barrier (BBB), a semipermeable border of endothelial cells that prevents pathogens, solutes and most molecules from non-selectively crossing into the CNS. Thus, the BBB acts to protect the CNS from potentially deleterious insults. Unfortunately, the BBB also frequently presents a significant barrier to therapies, impeding passage of drugs and biologicals to target cells within the CNS. This review provides an overview of different approaches to deliver therapeutics across the BBB, with an emphasis in extracellular vesicles as delivery vehicles to the CNS.

2018 ◽  
Vol 62 (1) ◽  
pp. 44-51
Author(s):  
Z. Tkáčová ◽  
E. Káňová ◽  
I. Jiménez-Munguía ◽  
Ľ. Čomor ◽  
I. Širochmanová ◽  
...  

Abstract The penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) are important steps for all neuroinvasive pathogens. All of the ways of pathogens passing through the BBB are still unclear. Among known pathways, pathogen traversal can occur paracellularly, transcellularly or using a “Trojan horse” mechanism. The first step of translocation across the BBB is the interactions of the pathogen’s ligands with the receptors of the host brain cells. Lyme disease, the most common vector-borne disease in the temperate zones of Europe and North America, are caused by Borreliella species (former Borrelia burgdorferi sensu lato) that affects the peripheral and the CNS. In this review, we have presented various pathogen interactions with endothelial cells, which allow the disruption of the BBB so that the pathogens can pass across the BBB.


e-Neuroforum ◽  
2013 ◽  
Vol 19 (4) ◽  
Author(s):  
E.-M. Krämer-Albers ◽  
C. Frühbeis

AbstractCommunication between cells is a basic requirement for proper nervous system function. Glial cells execute various functions, operating in close coordination with neurons. Recent research revealed that cell commu­nication is mediated by the exchange of extracellular vesicles, which are also secreted by glial cells and neurons. Extracellular vesicles comprise exosomes and microvesicles, which deliver proteins and ribonucleic acids to target cells. As a result of transfer, the vesicle cargo components can modulate the phe­notype of recipient cells. Here, we discuss the characteristics and functions of extracellular vesicles in general and in particular in the central nervous system, where myelinat­ing oligodendrocytes release exosomes in response to neurotransmitter signals, which are internalized by neurons and exhibit neuroprotective functions.


2003 ◽  
Vol 161 (3) ◽  
pp. 653-660 ◽  
Author(s):  
Takehiro Nitta ◽  
Masaki Hata ◽  
Shimpei Gotoh ◽  
Yoshiteru Seo ◽  
Hiroyuki Sasaki ◽  
...  

Tight junctions are well-developed between adjacent endothelial cells of blood vessels in the central nervous system, and play a central role in establishing the blood-brain barrier (BBB). Claudin-5 is a major cell adhesion molecule of tight junctions in brain endothelial cells. To examine its possible involvement in the BBB, claudin-5–deficient mice were generated. In the brains of these mice, the development and morphology of blood vessels were not altered, showing no bleeding or edema. However, tracer experiments and magnetic resonance imaging revealed that in these mice, the BBB against small molecules (<800 D), but not larger molecules, was selectively affected. This unexpected finding (i.e., the size-selective loosening of the BBB) not only provides new insight into the basic molecular physiology of BBB but also opens a new way to deliver potential drugs across the BBB into the central nervous system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yinan Zhao ◽  
Yanguo Xin ◽  
Zhiyi He ◽  
Wenyu Hu

Neuronal signaling together with synapse activity in the central nervous system requires a precisely regulated microenvironment. Recently, the blood-brain barrier is considered as a “neuro-glia-vascular unit,” a structural and functional compound composed of capillary endothelial cells, glial cells, pericytes, and neurons, which plays a pivotal role in maintaining the balance of the microenvironment in and out of the brain. Tight junctions and adherens junctions, which function as barriers of the blood-brain barrier, are two well-known kinds in the endothelial cell junctions. In this review, we focus on the less-concerned contribution of gap junction proteins, connexins in blood-brain barrier integrity under physio-/pathology conditions. In the neuro-glia-vascular unit, connexins are expressed in the capillary endothelial cells and prominent in astrocyte endfeet around and associated with maturation and function of the blood-brain barrier through a unique signaling pathway and an interaction with tight junction proteins. Connexin hemichannels and connexin gap junction channels contribute to the physiological or pathological progress of the blood-brain barrier; in addition, the interaction with other cell-cell-adhesive proteins is also associated with the maintenance of the blood-brain barrier. Lastly, we explore the connexins and connexin channels involved in the blood-brain barrier in neurological diseases and any programme for drug discovery or delivery to target or avoid the blood-brain barrier.


2019 ◽  
Vol 19 (1S) ◽  
pp. 207-209
Author(s):  
T N Kozhevnikova ◽  
A V Sanin ◽  
S V Ozherelkov

Antiapoptosis activity of plant polyprenylphosphate against macrophage target cells infected with the murine encephalomyelitis virus. Infection caused by the Theiler’s murine encephalomyelitis virus (TMEV) is regarded as an experimental model of multiple sclerosis, since both of these diseases are characterized by similar pathology of the central nervous system tissues and involvement of the immune system in the development of the demielinization. The aim of the work was to study the effect of plant-derived polyprenylphosphate (PP) on the apoptosis of infected target cells. We showed that PP reduced apoptosis of macrophage target cells infected with TMEV. It is known that in the protocol of multiple sclerosis treatment some medicines possessing immunomodulatory, antiviral, anti-inflammatory and antioxidant activity are used. Since PPs of plant origin also have all these activities, the prospects of their use as therapeutic agents are discussed.


2006 ◽  
Vol 8 (3) ◽  
pp. 311-321 ◽  

Drug transporters are membrane proteins present in various tissues such as the lymphocytes, intestine, liver, kidney, testis, placenta, and central nervous system. These transporters play a significant role in drug absorption and distribution to organic systems, particularly if the organs are protected by blood-organ barriers, such as the blood-brain barrier or the maternal-fetal barrier. In contrast to neurotransmitters and receptor-coupled transporters or other modes of interneuronal transmission, drug transporters are not directly involved in specific neuronal functions, but provide global protection to the central nervous system. The lack of capillary fenestration, the low pinocytic activity and the tight junctions between brain capillary and choroid plexus endothelial cells represent further gatekeepers limiting the entrance of endogenous and exogenous compounds into the central nervous system. Drug transport is a result of the concerted action of efflux and influx pumps (transporters) located both in the basolateral and apical membranes of brain capillary and choroid plexus endothelial cells. By regulating efflux and influx of endogenous or exogenous substances, the blood-brain barrier and, to a lesser extent the blood-cerebrospinal barrier in the ventricles, represents the main interface between the central nervous system and the blood, i.e., the rest of the body. As drug distribution to organs is dependent on the affinity of a substrate for a specific transport system, membrane transporter proteins are increasingly recognized as a key determinant of drug disposition. Many drug transporters are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily or the solute-linked carrier (SLC) class. The multidrug resistance protein MDR1 (ABCB1), also called P-glycoprotein, the multidrug resistance-associated proteins MRP1 (ABCC1) and MRP2 (ABCC2), and the breast cancer-resistance protein BCRP (ABCG2) are ATP-dependent efflux transporters expressed in the blood-brain barrier They belong to the superfamily of ABC transporters, which export drugs from the intracellular to the extracellular milieu. Members of the SLC class of solute carriers include, for example, organic ion transporting peptides, organic cation transporters, and organic ion transporters. They are ATP-independent polypeptides principally expressed at the basolateral membrane of brain capillary and choroid plexus endothelial cells that also mediate drug transport through central nervous system barriers.


2004 ◽  
Vol 72 (9) ◽  
pp. 4985-4995 ◽  
Author(s):  
Yun C. Chang ◽  
Monique F. Stins ◽  
Michael J. McCaffery ◽  
Georgina F. Miller ◽  
Dan R. Pare ◽  
...  

ABSTRACT Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis. We used both an in vivo mouse model and an in vitro model of the human BBB to investigate the cryptococcal association with and traversal of the BBB. Exposure of human brain microvascular endothelial cells (HBMEC) to C. neoformans triggered the formation of microvillus-like membrane protrusions within 15 to 30 min. Yeast cells of C. neoformans adhered to and were internalized by the HBMEC, and they crossed the HBMEC monolayers via a transcellular pathway without affecting the monolayer integrity. The histopathology of mouse brains obtained after intravenous injection of C. neoformans showed that the yeast cells either were associated with endothelial cells or escaped from the brain capillary vessels into the neuropil by 3 h. C. neoformans was found in the brain parenchyma away from the vessels by 22 h. Association of C. neoformans with the choroid plexus, however, was not detected during up to 10 days of observation. Our findings indicate that C. neoformans cells invade the central nervous system by transcellular crossing of the endothelium of the BBB.


Sign in / Sign up

Export Citation Format

Share Document