scholarly journals Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1072
Author(s):  
Ahmed Aido ◽  
Olena Zaitseva ◽  
Harald Wajant ◽  
Matej Buzgo ◽  
Aiva Simaite

Conventional bivalent IgG antibodies targeting a subgroup of receptors of the TNF superfamily (TNFSF) including fibroblast growth factor-inducible 14 (anti-Fn14) typically display no or only very limited agonistic activity on their own and can only trigger receptor signaling by crosslinking or when bound to Fcγ receptors (FcγR). Both result in proximity of multiple antibody-bound TNFRSF receptor (TNFR) molecules, which enables engagement of TNFR-associated signaling pathways. Here, we have linked anti-Fn14 antibodies to gold nanoparticles to mimic the “activating” effect of plasma membrane-presented FcγR-anchored anti-Fn14 antibodies. We functionalized gold nanoparticles with poly-ethylene glycol (PEG) linkers and then coupled antibodies to the PEG surface of the nanoparticles. We found that Fn14 binding of the anti-Fn14 antibodies PDL192 and 5B6 is preserved upon attachment to the nanoparticles. More importantly, the gold nanoparticle-presented anti-Fn14 antibody molecules displayed strong agonistic activity. Our results suggest that conjugation of monoclonal anti-TNFR antibodies to gold nanoparticles can be exploited to uncover their latent agonism, e.g., for immunotherapeutic applications.

Langmuir ◽  
2019 ◽  
Vol 35 (6) ◽  
pp. 2251-2260 ◽  
Author(s):  
Srikanth Nayak ◽  
Max Fieg ◽  
Wenjie Wang ◽  
Wei Bu ◽  
Surya Mallapragada ◽  
...  

2019 ◽  
Vol 224 ◽  
pp. 22-28 ◽  
Author(s):  
Pa Fan Hsiao ◽  
Hsieh-Chih Tsai ◽  
Sydney Peng ◽  
Adhimoorthy Prasannan ◽  
Ting-Cheng Tang ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yubo Wang ◽  
Jose Enrico Q. Quinsaat ◽  
Tomoko Ono ◽  
Masatoshi Maeki ◽  
Manabu Tokeshi ◽  
...  

AbstractNano-sized metal particles are attracting much interest in industrial and biomedical applications due to the recent progress and development of nanotechnology, and the surface-modifications by appropriate polymers are key techniques to stably express their characteristics. Herein, we applied cyclic poly(ethylene glycol) (c-PEG), having no chemical inhomogeneity, to provide a polymer topology-dependent stabilization for the surface-modification of gold nanoparticles (AuNPs) through physisorption. By simply mixing c-PEG, but not linear counterparts, enables AuNPs to maintain dispersibility through freezing, lyophilization, or heating. Surprisingly, c-PEG endowed AuNPs with even better dispersion stability than thiolated PEG (HS–PEG–OMe). The stronger affinity of c-PEG was confirmed by DLS, ζ-potential, and FT-IR. Furthermore, the c-PEG system exhibited prolonged blood circulation and enhanced tumor accumulation in mice. Our data suggests that c-PEG induces physisorption on AuNPs, supplying sufficient stability toward bio-medical applications, and would be an alternative approach to the gold–sulfur chemisorption.


2016 ◽  
Vol 52 (7) ◽  
pp. 1517-1519 ◽  
Author(s):  
Takehiko Ishii ◽  
Kanjiro Miyata ◽  
Yasutaka Anraku ◽  
Mitsuru Naito ◽  
Yu Yi ◽  
...  

Monodispersed gold nanoparticles (AuNPs) were simultaneously decorated with lactosylated and non-modified shorter poly(ethylene glycol)s (PEGs) to enhance their target recognition.


Sign in / Sign up

Export Citation Format

Share Document