scholarly journals Preformulation Studies and Bioavailability Enhancement of Curcumin with a ‘Two in One’ PEG-β-Cyclodextrin Polymer

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1710
Author(s):  
Ádám Haimhoffer ◽  
Eleftheria Dossi ◽  
Monika Béresová ◽  
Ildikó Bácskay ◽  
Judit Váradi ◽  
...  

Drug delivery systems are used to improve the biopharmaceutical properties of curcumin. Our aim was to investigate the effect of a water-soluble ‘two in one’ polymer containing covalently bonded PEG and βCD moieties (βCPCD) on the solubility and bioavailability of curcumin and compare it to a polymeric β-cyclodextrin (βCDP) cross-linked with epichlorohydrin. Phase-solubility and dynamic light scattering (DLS) experiments showed that the solubility of curcumin increased significantly in 10 m/m % βCPCD and βCDP solutions, but βCPCD–curcumin particles had higher hydrodynamic volume. The formation of the βCPCD–curcumin complex in solution and sedimented phase was confirmed by NMR spectroscopy. Biocompatibility and permeability experiments were performed on Caco-2 cells. Polymers did not show cytotoxicity up to 10 m/m % and βCPCD significantly increased the permeability of curcumin. DLS measurements revealed that among the interaction of polymers with mucin, βCPCD formed bigger aggregates compared to βCDP. Curcumin complexes were lyophilized into capsules and structurally characterized by micro-CT spectroscopy. Drug release was tested in a pH 1.2 medium. Lyophilized complexes had a solid porous matrix and both βCPCD and βCDP showed rapid drug release. βCPCD provides an opportunity to create a swellable, mucoadhesive matrix system for oral drug delivery.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1456
Author(s):  
Angeliki Siamidi ◽  
Aikaterini Dedeloudi ◽  
Marilena Vlachou

In the last decades, the notion of including excipients in the formulations, as inert substances aiding production processes, has changed and they are recently viewed as multifunctional discrete entities. It is now well documented that excipients serve several roles, spreading from the stabilization and modified release, to providing biocompatible properties and targeting moieties. The aim of this study was to develop matrix-based oral drug delivery systems of bupropion hydrochloride (BUP·HCl) and naltrexone hydrochloride (NTX·HCl), suitable for releasing these active substances in a modified manner, providing a stable level of drug release, which is simultaneously therapeutically effective and non-toxic, thus reducing side effects, after a single dose administration, throughout the gastrointestinal tract. The new formulations, employing hydroxypropylmethycellulose (HPMC K15M) (a cellulosic polymer, which, generally hydrates to form a gelatinous layer that is critical to prevent wetting and rapid drug release from the matrices), poly(methacylic acid-co-ethyl acrylate) 1:1 (Eudragit® L100-55: effective for site specific drug delivery in intestine), poly(ethylene oxide) (PEO) (7 × 106: a high molecular weight polymer, water-soluble, in micro-granular powder form), as the rate controlling polymers, were chosen to lead to a “soothing out” release pattern of these drugs, at 0 ≤ t ≤ 120 min. Moreover, the release of the two drugs from the ulvan-based tablets, was found to follow the desired profile, throughout the entire course of the dissolution experiments.


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


Author(s):  
Amit Prakash ◽  
Amit Prakash

Oral drug delivery is the most commonly used and preferred route of delivery of pharmaceuticals which has been successfully treating wide number of diseases. The advantages of this method of delivery are patient friendly, cost effective, established delivery system, noninvasiveness and convenient, and In the pharmaceutical field it is the most favored drug delivery system. Oral drug delivery systems along with other effective delivery system types that are effective and promising are discussed in this paper based on the mechanism of drug release.


2015 ◽  
Vol 17 (3) ◽  
Author(s):  
Line Hagner Nielsen ◽  
Johan Nagstrup ◽  
Sarah Gordon ◽  
Stephan Sylvest Keller ◽  
Jesper Østergaard ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 125 ◽  
Author(s):  
Ali Nasr ◽  
Mona Qushawy ◽  
Shady Swidan

Objective: In the present investigation efforts were considered to optimize the different conditions for the preparation of spray dried lactose based proniosomes. The aim of this research was to investigate the feasibility of proniosomes as stable precursors for the development of niosomes as oral drug delivery system for poorly water-soluble drugs.Methods: A total of twenty-eight plain proniosomal formulae were prepared with various surfactant-cholesterol loading ratios in each formula using spray dried lactose as a carrier. Span 20, 40, 60 and 80 were used in various molar ratios with cholesterol. Different evaluation techniques were performed to study the performance of the prepared proniosomes. The micromeritic properties of the prepared proniosomes were analyzed. The reconstituted niosomes were further evaluated for morphological characterization using transmission electron microscope (TEM), particle size analysis, zeta potential, and polydispersity index (PDI). Finally, selected proniosomal formulae were tested for stability study.Results: The proniosomal formulae prepared using span 40 and span 60 exhibited excellent flowability while those prepared with span 20 and span 80 showed poor flow properties. TEM photographs revealed that the vesicles were discrete, spherical without aggregation. The mean vesicle size of reconstituted niosomes was found to be in the range between (252.9±0.43–624.3±0.23 nm) with perfect PDI values (0.387±0.05–0.835±0.03). The negative values of zeta potential indicated that all prepared formulae were stabilized by electrostatic repulsion forces. Stability studies confirmed that proniosomes give a more stable system that could overcome the problems of standard niosomes. Formulae with the smallest particle size, higher surface charge values and best flow properties were selected to be loaded with poorly soluble drugs for further study.Conclusion: The obtained results offered evidence that spray-dried lactose based proniosomes are promising stable drug delivery carriers and ready to incorporate various poorly water-soluble drugs in order to improve their limited oral bioavailability.


Author(s):  
BITOPAN BAISHYA ◽  
SHEIKH SOFIUR RAHMAN ◽  
DAMANBHALANG RYNJAH ◽  
KAMALLOCHAN BARMAN ◽  
SARANGA SHEKHAR BORDOLOI ◽  
...  

Among various routes of drug delivery, Oral administration is the most convenient route because of its high patient compliance. Although oral drug delivery is effective for drugs with high aqueous solubility and epithelial permeability; however for poorly aqueous soluble drug the membrane permeability, chemical, and enzymatic stability of drugs are the major limitations in successful oral drug delivery. Almost 70% of the new drug candidates which shows poor bioavailability, the antihypertensive drugs are among those. Novel drug delivery systems are available in many areas to overcome the problems associated with hydrophobic drugs and the nanotechnology-based drug delivery system is the most potential to beat the challenges related to the oral route of administration with some important advantages such as the colloidal size, biocompatibility, lowered dose size, reduced toxicity, patient compliance and drug targeting. The foremost common nanotechnology-based strategies utilized in the development of delivery systems are nano-emulsions, nano-suspensions, dendrimers, micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, carbon nanotubes, Self-Nano-emulsifying Drug Delivery System, proliposomes, nano-crystals, and so forth, which give controlled, sustained, and targeted drug delivery. The appliance of those systems within the treatment of hypertension continues to broaden. This review focuses on various nano-carriers available in oral drug administration for improving solubility profile, dissolution, and consequently bioavailability of hydrophobic antihypertensive drugs.


Sign in / Sign up

Export Citation Format

Share Document