scholarly journals Compartmental and COMSOL Multiphysics 3D Modeling of Drug Diffusion to the Vitreous Following the Administration of a Sustained-Release Drug Delivery System

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1862
Author(s):  
Emily Dosmar ◽  
Gabrielle Vuotto ◽  
Xingqi Su ◽  
Emily Roberts ◽  
Abigail Lannoy ◽  
...  

The purpose of this study was to examine antibiotic drug transport from a hydrogel drug delivery system (DDS) using a computational model and a 3D model of the eye. Hydrogel DDSs loaded with vancomycin (VAN) were synthesized and release behavior was characterized in vitro. Four different compartmental and four COMSOL models of the eye were developed to describe transport into the vitreous originating from a DDS placed topically, in the subconjunctiva, subretinally, and intravitreally. The concentration of the simulated DDS was assumed to be the initial concentration of the hydrogel DDS. The simulation was executed over 1500 and 100 h for the compartmental and COMSOL models, respectively. Based on the MATLAB model, topical, subconjunctival, subretinal and vitreous administration took most (~500 h to least (0 h) amount of time to reach peak concentrations in the vitreous, respectively. All routes successfully achieved therapeutic levels of drug (0.007 mg/mL) in the vitreous. These models predict the relative build-up of drug in the vitreous following DDS administration in four different points of origin in the eye. Our model may eventually be used to explore the minimum loading dose of drug required in our DDS leading to reduced drug use and waste.

2013 ◽  
Vol 651 ◽  
pp. 227-231
Author(s):  
Qiang Song Wang ◽  
Yuan Lu Cui ◽  
Tian Jiao Dong

The purpose of the study was to prepare and evaluation chitosin-coated alginate/gelatin microspheres for sustained-release drug delivery system in vitro. The microspheres were prepared with an emulsification technique, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), differential scanning calorimetry (DSC). The average particle size of the chitosan-coated alginate/gelatin microspheres was uniform. The results of FT-IR and DSC showed that the microspheres were formed by intermolecular cross-linkages between chitosan and gelatin. The results also implied that the microsphere were a practicable dosage form to increase drug loading ratio for the poorly water-soluble drugs by encapsulated with chitosan. In vitro release of the microsphere indicated that it had a satisfactory sustained-release behavior for the sustained-release drug delivery system.


Author(s):  
Lendave A. S.

Microsponge drug delivery system (MDDS) technology holds a remarkable promise for achieving the aim of controlled and site-specific drug delivery which reduce systemic exposure and minimize local cutaneous reactions to active drug and as a result, has attracted huge interest of researchers. Microsponges consist of microporus beads, typically 10-25 microns in diameter, loaded with active agent. When carried out to the skin, the microsponge releases its active element on a time mode and also in reaction to different stimuli (rubbing, temperature, pH, and many others) which can be used ordinarily for topical and lately for oral management. This article gives a extensive assessment of Microsponges drug transport system discussing the concepts and practise methods. Appropriate analytical techniques for characterization of microsponges like particle size and its distribution, surface morphology, porosity, density, In Vitro drug release studies as well as applications of microsponge and future prospects are covered. Advantages/Potential functions, limitations and their possible remedies of the microsponge and programmable parameters are also mentioned. The microsponge are used in the sunscreens, creams, ointments, over the counter skin care preparations, which are meant for topical application. microsponge drug delivery can provide increased efficacy for topical active agent with enhanced safety, extended product stability.


2018 ◽  
Vol 163 ◽  
pp. 178-185 ◽  
Author(s):  
Tingting Li ◽  
Lele Zhao ◽  
Ziliang Zheng ◽  
Min Zhang ◽  
Yidan Sun ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hitesh Chavda ◽  
Ishan Modhia ◽  
Anant Mehta ◽  
Rupal Patel ◽  
Chhagan Patel

Bioadhesive superporous hydrogel composite (SPHC) particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content,in vitrodrug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.


RSC Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 3623-3623
Author(s):  
Junyan Yao ◽  
Shijie Zhang ◽  
Wudan Li ◽  
Zhi Du ◽  
Yujie Li

Correction for ‘In vitro drug controlled-release behavior of an electrospun modified poly(lactic acid)/bacitracin drug delivery system’ by Junyan Yao et al., RSC Adv., 2016, 6, 515–521.


Sign in / Sign up

Export Citation Format

Share Document