scholarly journals Comparative Study on Inhibition of Pancreatic Cancer Cells by Resveratrol Gold Nanoparticles and a Resveratrol Nanoemulsion Prepared from Grape Skin

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1871
Author(s):  
Baskaran Stephen Inbaraj ◽  
Leng-Huei Hua ◽  
Bing-Huei Chen

Resveratrol, a phenolic compound possessing vital biological activities such as anti-cancer, is present abundantly in grape skin, a waste produced during the processing of grape juice. The objectives of this study were to prepare resveratrol-gold nanoparticles and a resveratrol nanoemulsion from grape skin and study their inhibition effects on pancreatic cancer cells BxPC-3. The spherical-shaped citrate gold nanoparticles (GNPs) and resveratrol-gold nanoparticles (R-GNPs) were, respectively, prepared with a surface plasmon resonance peak at 528 and 538 nm, mean particle size of 20.8 and 11.9 nm, and zeta-potential at −32.7 and −66.7 mV, by controlling an appropriate concentration of citrate/resveratrol and gold chloride as well as stirring time and temperature. The resveratrol nanoemulsion, composed of soybean oil, Tween 80, and sucrose fatty acid ester in glycerol and water, possessed a high storage stability with a mean particle size of 14.1 nm, zeta-potential of −49.7 mV, and encapsulation efficiency of 95.5%. An antiproliferation study revealed that both R-GNPs and resveratrol nanoemulsion could effectively inhibit the growth of pancreatic cancer cells BxPC-3, with the latter showing a higher inhibition effect. Western blot analysis implied that both can down-regulate expressions of cyclin A, cyclin B, CDK1, and CDK2 and up-regulate expressions of p53 and p21, accompanied by enhancing cytochrome C expression, decreasing BcL-2 expression, increasing Bax expression, and leading to the elevation of caspase-8, caspase-9, and caspase-3 activities for cell apoptosis execution. Future research is needed to study the inhibition of pancreatic tumors in vivo by R-GNPs and resveratrol nanoemulsions.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 91 ◽  
Author(s):  
Sílvia Coelho ◽  
Daniel Reis ◽  
Maria Pereira ◽  
Manuel Coelho

Colloidal gold nanoparticles are targeting probes to improve varlitinib delivery into cancer cells. The nanoconjugates were designed by the bioconjugation of pegylated gold nanoparticles with varlitinib via carbodiimide-mediated cross-linking and characterized by infrared and X-ray photoelectron spectroscopy. The drug release response shows an initial delay and a complete drug release after 72 h is detected. In vitro experiments with MIA PaCa-2 cells corroborate that PEGAuNPsVarl conjugates increase the varlitinib toxic effect at very low concentrations (IC50 = 80 nM) if compared with varlitinib alone (IC50 = 259 nM). Our results acknowledge a decrease of drug side effects in normal cells and an enhancement of drug efficacy against to the pancreatic cancer cells reported.


Cell Stress ◽  
2019 ◽  
Vol 3 (8) ◽  
pp. 267-279 ◽  
Author(s):  
Yanyan Huai ◽  
Yushan Zhang ◽  
Xunhao Xiong ◽  
Shamik Das ◽  
Resham Bhattacharya ◽  
...  

Author(s):  
Ragavy Radhakrishnan ◽  
Uthirappan Mani ◽  
Arumugam Gnanamani ◽  
Muthiah Shanmugavel

This work was initiated to investigate the myco-fabrication of gold nanoparticles (AuNPs) using a fungal strain, Aspergillus tamarii 5152 (A. tamarii MTCC 5152). The biosynthesized gold nanoparticles were characterized by visual observation, and using UV-Vis and FTIR spectroscopy, DSC, TGA, Zeta-potential, DLS and SEM analyses. NADH-dependent cofactor analysis and photocatalysis assays were carried out for NADH-dependent AuNPs biosynthesis and dye degradation ability. A maximum surface plasmon resonance peak for the AuNPs was recorded at 535 nm, followed by the identification of protein capping effect of the extract by FTIR spectroscopy. The average size (Z) of the nanoparticles observed was 39.15 nm, while SEM images showed crystallized rod-shaped structures ranging from 55-91 nm. A negative zeta potential of 10.5 mV showed repulsion between the nanoparticles, which indicates the stabilizing power of the fungal extract. Further, it was observed that NADH acts as a cofactor for the nanoparticle biosynthesis. The AuNPs were found to degrade crystal violet dye by 63%. From this study, it can be understood that the process of fungal mediated biosynthesis of AuNPs by A. tamarii MTCC 5152 is simple, less expensive, and could be utilized for bioremediation of toxic dye accumulation.


2021 ◽  
Vol 14 (8) ◽  
pp. 729
Author(s):  
Nabil A. Alhakamy ◽  
Osama A. A. Ahmed ◽  
Usama A. Fahmy ◽  
Shadab Md

Pancreatic cancer has a low survival rate and has limited therapeutic options due to the peculiarity of the tumor tissue. Cancer nanotechnology provides several opportunities to resolve such difficulties as a result of the high surface-to-volume ratio of nanostructures. Peptide–drug nanocomplexes have proved to have immense potential in anticancer activity against pancreatic cancer cells. Thus, in the present study apamin (APA) and alendronate sodium (ALS) were combined to form nanocomplexes (APA-ALS-NC) against pancreatic cancer cells. Optimization of ALS, incubation time, and sonication time in terms of particle size of the nanocomplex was carried out. The optimized formulation was evaluated for anticancer activities in pancreatic cancer cells (PANC-1 cells). A Box–Behnken design using ALS, incubation time, and sonication time as independent factors and particle size as the response was chosen to optimize the APA-ALS-NC formulation. The optimized APA-ALS-NC had a particle size of 161.52 ± 8.4 nm. The evaluation of APA-ALS-NC in PANC-1 cells was carried out using various in vitro tests. The IC50 values were determined by MTT assay and found to be 37.6 ± 1.65, 13.4 ± 0.59, and 1.01 ± 0.04 µg/mL for ALS, APA, and APA-ALS-NC, respectively. The higher cytotoxicity activity of APA-ALS-NC was confirmed from the higher percentage of cells in the necrosis phase (apoptosis study) and the G2-M phase (cell cycle study) compared to that of ALS and APA. While the loss of mitochondrial membrane potential was less for APA-ALS-NC, the levels of IL-1β, TNF-α, caspase-3, ROS, IL-6, and NF-kB showed that APA-ALS-NC can significantly enhance apoptosis and cytotoxicity in PANC-1 cells. Moreover, Bax (10.87 ± 1.36), Bcl-2 (0.27 ± 0.02), and p53 (9.16 ± 1.22) gene expressions confirmed that APA-ALS-NC had a significant apoptotic effect compared to ALS and APA. In summary, the APA-ALS-NC had a more significant cytotoxic effect than ALS and APA. The results of the present study are promising for further evaluation in pre-clinical and clinical trials for arriving at a successful therapeutic strategy against pancreatic cancer.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 551 ◽  
Author(s):  
Sílvia Castro Coelho ◽  
Daniel Pires Reis ◽  
Maria Carmo Pereira ◽  
Manuel A. N. Coelho

The aim of this study was to develop drug delivery nanosystems based on pegylated gold nanoparticles (PEGAuNPs) for a combination against pancreatic cancer cells. Doxorubicin and varlitinib, an anthracycline and a tyrosine kinase inhibitor respectively, were conjugated with gold nanoparticles. The systems were characterized, after synthesis, regarding their size, stability and morphology. An efficient conjugation of doxorubicin and varlitinib with PEGAuNPs was revealed. The cytotoxicity effect induced by the combination of the nanoconjugates was investigated in pancreatic cancer cell lines. Doxorubicin and varlitinib conjugated with PEGAuNPs revealed a combined effect to decrease the cell survival of the cancer line S2-013s, while reducing the drugs’ toxicity for the healthy pancreatic cells hTERT-HPNE. This study highlights the promising potential of PEGAuNPs for targeted delivery of therapeutic drugs into human cells, enhancing the antitumor growth-inhibition effect on cancer cells, and decreasing the toxicity against normal cells. In cancer therapy, the present approach based on PEGAuNP functionalization can be further explored to increase drug targeting efficiency and to reduce side effects.


Sign in / Sign up

Export Citation Format

Share Document