scholarly journals Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1876
Author(s):  
Lorenzo Marsili ◽  
Michele Dal Bo ◽  
Federico Berti ◽  
Giuseppe Toffoli

Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.

2021 ◽  
Author(s):  
Jojo P Joseph ◽  
Chirag Miglani ◽  
Aashish Bhatt ◽  
Debes Ray ◽  
Ashmeet Singh ◽  
...  

Chain collapse in synthetic polymers is an excellent approach to mimick natural self-folding process that imparts structural control leading to attractive compartmental applications e.g. drug delivery. In this regard, water...


Author(s):  
Caitlin Miron

Molecular tweezers are simple synthetic receptors that are generally composed of two binding domains connected by a spacer group. The non-covalent interactions that occur between the tweezer and its substrate are usually reversible, which facilitates the release of the bound substrate at a target site when triggered by a stimulus such as light, temperature, pH,] or change in chemical potential. In the field of cancer research, one strategy for targeting drug delivery relies on the pH drop in cancerous tissues compared to healthy tissues. We recently showed, for the first time, that it is possible to use pH to tune the binding affinity of molecular tweezers for substrates such as the cancer drug MitoxantroneTM. The molecular tweezer switches conformation from a closed (binding) state to an open (release) state upon acidification. As a result, the targeted delivery of MitoxantroneTM is achieved. This proof of concept shows that molecular tweezers are promising tools for selective drug delivery.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3782
Author(s):  
Anupama Devi V. K. ◽  
Rohin Shyam ◽  
Arunkumar Palaniappan ◽  
Amit Kumar Jaiswal ◽  
Tae-Hwan Oh ◽  
...  

Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ‘’smart self-healing hydrogels’’ which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel’s mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.


2014 ◽  
Vol 12 (3) ◽  
pp. 441-453 ◽  
Author(s):  
Simona De Robertis ◽  
Maria Cristina Bonferoni ◽  
Lisa Elviri ◽  
Giuseppina Sandri ◽  
Carla Caramella ◽  
...  

Author(s):  
Manzar Abbas ◽  
Atia Atiq ◽  
Ruirui Xing ◽  
Xuehai Yan

The natural biomolecules of peptides and proteins are able to form elegant metal incorporating supramolecular nanomaterials through multiple weak non-covalent interactions.


2020 ◽  
Author(s):  
Bouzid Gassoumi ◽  
Fatma Ezzahra Ben Mohamed ◽  
Houcine Ghalla ◽  
Rafik Ben Chaabane

The calix[4]arenes (abbreviated as CX[4]) are characterized by a specific hydrophobic cavity formed by a four cyclically phenol groups to encapsulate a gas or small molecules. Recently, the CX[4] molecule is used in a specific media and in pharmaceutical drug delivery. The pollution problem will be a vital subject in the future because the increase of the explosions of the gaseous pollutants in the environment. In this report, we have encapsulated the polluting gases NO3, NO2, CO2 and N2 by the calix[4]arene molecule. In this work, The binding energies of the CX[4]-gas has been calculated including the BSSE (Basis Set Superposition Error) counterpoise (CP). The red-shift of the O-H bonding interactions obtained by adding the gas in the sensitive area of calix[4]arene is clearly explained by the infrared spectrum analysis. The Molecular electrostatic potential (MEP) of the stable CX[4]-gas complexes have been investigated in the endo-vs. exo-cavity regions. Finally, the non-covalent interactions analyses of the stable host-guests complexes have been estimated by using DFT calculations.


2021 ◽  
Vol 27 ◽  
Author(s):  
Nasrullah Shah ◽  
Manzoor Hussain ◽  
Touseef Rehan ◽  
Abbas Khan ◽  
Zubair Ullah Khan

: Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.


Sign in / Sign up

Export Citation Format

Share Document