scholarly journals Free Space Intra-Datacenter Interconnects Based on 2D Optical Beam Steering Enabled by Photonic Integrated Circuits

Photonics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 21 ◽  
Author(s):  
Charidimos Chaintoutis ◽  
Behnam Shariati ◽  
Adonis Bogris ◽  
Paul Dijk ◽  
Chris Roeloffzen ◽  
...  

Data centers are continuously growing in scale and can contain more than one million servers spreading across thousands of racks; requiring a large-scale switching network to provide broadband and reconfigurable interconnections of low latency. Traditional data center network architectures, through the use of electrical packet switches in a multi-tier topology, has fundamental weaknesses such as oversubscription and cabling complexity. Wireless intra-data center interconnection solutions have been proposed to deal with the cabling problem and can simultaneously address the over-provisioning problem by offering efficient topology re-configurability. In this work we introduce a novel free space optical interconnect solution for intra-data center networks that utilizes 2D optical beam steering for the transmitter, and high bandwidth wide-area photodiode arrays for the receiver. This new breed of free space optical interconnects can be developed on a photonic integrated circuit; offering ns switching at sub-μW consumption. The proposed interconnects together with a networking architecture that is suitable for utilizing those devices could support next generation intra-data center networks, fulfilling the requirements of seamless operation, high connectivity, and agility in terms of the reconfiguration time.

2021 ◽  
Author(s):  
Christopher Mekhiel

The implementation of optical of wireless communications (OWC) requires the use of a light-emitting-diode (LED) or laser diode (LD). Due to significant path loss exhibited by these sources in an outdoor environment, an unobstructed point-to-point link must be maintained in order to increase the signal-to-noise ratio (SNR) at the receiver. This thesis considers a solution to alleviate the fundamental limitations of the OWC channel in an outdoor environment by investigating optical beam steering (OBS) to increase the signal strength in the desired direction. Conventional methods to implement on OBS use a microelectromechanical (MEMS) mirror or a spatial light modulator (SLM) which both suffer from low switching frequency. A high frequency OBS device can be created by using optical phased array (OPA). An electro-optic modulator (EOM) such as LiNbO3 can be used to create an OPA but can not be directly integrated in silicon. For monolithic silicon-on-insulator (SOI) solutions, previous literature uses thermo-optic couplers on SOI to implement the OPA, however this introduces the issue of thermal cross-talk. Therefore, this thesis focuses on the use of silicon as the EOM for use in an OPA to create a high frequency monolithic OBS. Our contributions consist of providing a design method for a OBS SOI device which exhibits minimum internal cross-talk and provides propagation in free-space with high directivity and a wide steering range. Additionally, propose the use of an internal heterodyne optical phase locked loop (PLL) to stabilize the OBS instead of an external signal processor for phase correction. This optical PLL reduces beam jitter, minimizes beam squint, and provides active tracking for the output beam towards the receiver. We have also characterized a shadowing scenario in an OWC channel which OBS has the potential to alleviate. Moreover, we simulated the optical far-field radiation pattern from a SOI waveguide to free-space which has not been demonstrated in previous research. Finally, our simulation results of a SOI OPA demonstrates the coherent combining capability of OBS using MEEPTtm and the Optiwavetm suite.


Author(s):  
Weihua Guo ◽  
Pietro R. A. Binetti ◽  
Milan L. Masanovic ◽  
Leif A. Johansson ◽  
Larry A. Coldren

2021 ◽  
Author(s):  
Christopher Mekhiel

The implementation of optical of wireless communications (OWC) requires the use of a light-emitting-diode (LED) or laser diode (LD). Due to significant path loss exhibited by these sources in an outdoor environment, an unobstructed point-to-point link must be maintained in order to increase the signal-to-noise ratio (SNR) at the receiver. This thesis considers a solution to alleviate the fundamental limitations of the OWC channel in an outdoor environment by investigating optical beam steering (OBS) to increase the signal strength in the desired direction. Conventional methods to implement on OBS use a microelectromechanical (MEMS) mirror or a spatial light modulator (SLM) which both suffer from low switching frequency. A high frequency OBS device can be created by using optical phased array (OPA). An electro-optic modulator (EOM) such as LiNbO3 can be used to create an OPA but can not be directly integrated in silicon. For monolithic silicon-on-insulator (SOI) solutions, previous literature uses thermo-optic couplers on SOI to implement the OPA, however this introduces the issue of thermal cross-talk. Therefore, this thesis focuses on the use of silicon as the EOM for use in an OPA to create a high frequency monolithic OBS. Our contributions consist of providing a design method for a OBS SOI device which exhibits minimum internal cross-talk and provides propagation in free-space with high directivity and a wide steering range. Additionally, propose the use of an internal heterodyne optical phase locked loop (PLL) to stabilize the OBS instead of an external signal processor for phase correction. This optical PLL reduces beam jitter, minimizes beam squint, and provides active tracking for the output beam towards the receiver. We have also characterized a shadowing scenario in an OWC channel which OBS has the potential to alleviate. Moreover, we simulated the optical far-field radiation pattern from a SOI waveguide to free-space which has not been demonstrated in previous research. Finally, our simulation results of a SOI OPA demonstrates the coherent combining capability of OBS using MEEPTtm and the Optiwavetm suite.


Author(s):  
Jiawei Huang ◽  
Shiqi Wang ◽  
Shuping Li ◽  
Shaojun Zou ◽  
Jinbin Hu ◽  
...  

AbstractModern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance. Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss. Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly adjusts the number of redundant packets based on the multi-path congestion information and the traffic characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced. Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by up to 60% compared with the state-of-the-art mechanisms.


2015 ◽  
Vol 7 (3-4) ◽  
pp. 391-398
Author(s):  
Giovanni Serafino ◽  
Antonio Malacarne ◽  
Claudio Porzi ◽  
Paolo Ghelfi ◽  
Marco Presi ◽  
...  

A novel, photonics-based scheme for the independent and simultaneous beam steering of multiple radio frequency signals at a wideband phased-array antenna is presented. As a proof of concept, a wavelength-selective switch (WSS) is employed both as a wavelength router to feed multiple antenna elements and as a tunable phase shifter to independently control the phase of each signal at any antenna element. In the experiment, two signals at 12.5 and 37.5 GHz are simultaneously fed to the four output ports of the WSS with independent and tunable phase shifts, emulating the independent steering of two signals in a four-element phased-array antenna. The results confirm the precision and flexibility of the proposed scheme, which can be realized both with bulk components or resorting to photonic integrated circuits, especially for wide-band applications. The architecture for a possible integrated implementation of the proposed solution is presented, employing a structure based on micro-ring resonator. Starting from these results, the feasibility of an integrated version of the presented architecture is also considered. The proposed photonic integrated circuit realizing the beam-forming network might be based on tunable true-time delay, as well as on phase shift through micro-ring resonators, and could be conveniently implemented with CMOS-compatible silicon technology.


Sign in / Sign up

Export Citation Format

Share Document