scholarly journals Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 95
Author(s):  
Chenxi Zhu ◽  
Yin Xu ◽  
Zhe Kang ◽  
Xin Hu ◽  
Yue Dong ◽  
...  

Mode-order converters drive the on-chip applications of multimode silicon photonics. Here, we propose a TM0-to-TM3 mode-order converter by leveraging a shallowly etched slot metasurface pattern atop the silicon waveguide, rather than as some previously reported TE-polarized ones. With a shallowly etched pattern on the silicon waveguide, the whole waveguide refractive index distribution and the corresponding field evolution will be changed. Through further analyses, we have found the required slot metasurface pattern for generating the TM3 mode with high conversion efficiency of 92.9% and low modal crosstalk <−19 dB in a length of 17.73 μm. Moreover, the device’s working bandwidth and the fabrication tolerance of the key structural parameters are analyzed in detail. With these features, such devices would be beneficial for the on-chip multimode applications such as mode-division multiplexing transmission.

2021 ◽  
Author(s):  
Han Ye ◽  
Yanrong Wang ◽  
Shuhe Zhang ◽  
Danshi Wang ◽  
Yumin Liu ◽  
...  

Precise manipulation of mode order in silicon waveguide plays a fundamental role in the on-chip all-optical interconnections and is still a tough task in design when the functional region is...


2021 ◽  
Author(s):  
Yin Xu ◽  
Luping Liu ◽  
Xin Hu ◽  
Yue Dong ◽  
Bo Zhang ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 157 ◽  
Author(s):  
Yin Xu ◽  
Feng Li ◽  
Zhe Kang ◽  
Dongmei Huang ◽  
Xianting Zhang ◽  
...  

Polarization-insensitive modulation, i.e., overcoming the limit of conventional modulators operating under only a single-polarization state, is desirable for high-capacity on-chip optical interconnects. Here, we propose a hybrid graphene-silicon-based polarization-insensitive electro-absorption modulator (EAM) with high-modulation efficiency and ultra-broad bandwidth. The hybrid graphene-silicon waveguide is formed by leveraging multi-deposited and multi-transferred methods to enable light interaction with graphene layers in its intense field distribution region instead of the commonly used weak cladding region, thus resulting in enhanced light–graphene interaction. By optimizing the dimensions of all hybrid graphene-silicon waveguide layers, polarization-insensitive modulation is achieved with a modulation efficiency (ME) of ~1.11 dB/µm for both polarizations (ME discrepancy < 0.006 dB/µm), which outperforms that of previous reports. Based on this excellent modulation performance, we designed a hybrid graphene-silicon-based EAM with a length of only 20 µm. The modulation depth (MD) and insertion loss obtained were higher than 22 dB and lower than 0.23 dB at 1.55 µm, respectively, for both polarizations. Meanwhile, its allowable bandwidth can exceed 300 nm by keeping MD more than 20 dB and MD discrepancy less than 2 dB, simultaneously, and its electrical properties were also analyzed. Therefore, the proposed device can be applied in on-chip optical interconnects.


2019 ◽  
Vol 28 (04) ◽  
pp. 1950034
Author(s):  
Baobao Chen ◽  
Junfan Chen ◽  
Yi Zhao ◽  
Shiming Gao

A silicon-based all-optical wavelength conversion (AOWC) chip is proposed and designed for two-dimensional hybrid multiplexing signals, including mode-division multiplexing (MDM) and wavelength-division multiplexing (WDM). The AOWC chip is structured by mode (de) multiplexers and highly nonlinear silicon waveguide. Tapered directional coupler-based mode (de) multiplexers are used to convert between TE[Formula: see text] and TE[Formula: see text] modes for the signal and pump. The AOWC function is realized using the four-wave mixing (FWM) effect in the multimode silicon waveguide. The on-chip conversion efficiencies are simulated to be [Formula: see text]20.66[Formula: see text]dB and [Formula: see text]20.77[Formula: see text]dB for the TE[Formula: see text] and TE[Formula: see text] mode signals, respectively. The bandwidth is 68.2[Formula: see text]nm, which can support 170 MDM-WDM (85 wavelengths [Formula: see text] 2 modes) hybrid multiplexing channels.


2019 ◽  
Vol 10 ◽  
pp. 2459-2467 ◽  
Author(s):  
Xiao bin Ren ◽  
Kun Ren ◽  
Ying Zhang ◽  
Cheng guo Ming ◽  
Qun Han

A symmetry-breaking nanostructure is proposed to achieve multiple Fano resonances. The nanostructure consists of an asymmetric ring resonator coupled to a plasmonic waveguide. The broken symmetry is introduced by deviating the centers of regular ring. New resonant modes that are not accessible through a regular symmetric ring cavity are excited. Thus, one asymmetric cavity can provide more than one resonant mode with the same mode order. As a result, the interval of Fano resonances is greatly reduced. By combining different rings with different degrees of asymmetry, multiple Fano resonances are generated. Those Fano resonances have different dependences on structural parameters due to their different physical origin. The resonance frequency and resonance peak number can be arbitrarily adjusted by changing the degree of asymmetry. This research may provide new opportunities to design on-chip optical devices with great tuning performance.


2019 ◽  
Author(s):  
Xiao bin Ren ◽  
Kun Ren ◽  
Ying Zhang ◽  
Cheng guo Ming ◽  
Qun Han

A symmetry-breaking nanostructure is proposed to achieve multiple Fano resonances. The nanostructure consists of an asymmetric ring resonator coupled to a plasmonic waveguide. The broken symmetry is introduced by deviating the centers of regular ring. New resonant modes those are not accessible to regular symmetric ring cavity are excited. Thus one asymmetric cavity can provide more than one resonant mode with the same mode order. As a result, the interval of Fano resonances is greatly reduced. By combining different rings with different asymmetric, multiple Fano resonances are generated. Those Fano resonances have different dependence on structural parameters due to their different physical origin. The resonance frequency and resonance peak number can be arbitrarily adjusted by changing the degree of asymmetry. This research may provide new opportunities to design on-chip optical devices with great tuning performance.


Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 239
Author(s):  
Yineng Wang ◽  
Xi Cao ◽  
Walter Messina ◽  
Anna Hogan ◽  
Justina Ugwah ◽  
...  

Capillary electrochromatography (CEC) is a separation technique that hybridizes liquid chromatography (LC) and capillary electrophoresis (CE). The selectivity offered by LC stationary phase results in rapid separations, high efficiency, high selectivity, minimal analyte and buffer consumption. Chip-based CE and CEC separation techniques are also gaining interest, as the microchip can provide precise on-chip control over the experiment. Capacitively coupled contactless conductivity detection (C4D) offers the contactless electrode configuration, and thus is not in contact with the solutions under investigation. This prevents contamination, so it can be easy to use as well as maintain. This study investigated a chip-based CE/CEC with C4D technique, including silicon-based microfluidic device fabrication processes with packaging, design and optimization. It also examined the compatibility of the silicon-based CEC microchip interfaced with C4D. In this paper, the authors demonstrated a nanofabrication technique for a novel microchip electrochromatography (MEC) device, whose capability is to be used as a mobile analytical equipment. This research investigated using samples of potassium ions, sodium ions and aspirin (acetylsalicylic acid).


2020 ◽  
pp. 1-1
Author(s):  
Yetian Huang ◽  
Yu He ◽  
Haoshuo Chen ◽  
Hanzi Huang ◽  
Yong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document