nanofabrication technique
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1957
Author(s):  
Luong-Lam Nguyen ◽  
Quang-Hai Le ◽  
Van-Nhat Pham ◽  
Mathieu Bastide ◽  
Sarra Gam-Derouich ◽  
...  

This paper describes a rapid bottom-up approach to selectively functionalize gold nanoparticles (AuNPs) on an indium tin oxide (ITO) substrate using the plasmon confinement effect. The plasmonic substrates based on a AuNP-free surfactant were fabricated by electrochemical deposition. Using this bottom-up technique, many sub-30 nm spatial gaps between the deposited AuNPs were randomly generated on the ITO substrate, which is difficult to obtain with a top-down approach (i.e., E-beam lithography) due to its fabrication limits. The 4-Aminodiphenyl (ADP) molecules were grafted directly onto the AuNPs through a plasmon-induced reduction of the 4-Aminodiphenyl diazonium salts (ADPD). The ADP organic layer preferentially grew in the narrow gaps between the many adjacent AuNPs to create interconnected AuNPs. This novel strategy opens up an efficient technique for the localized surface modification at the nanoscale over a macroscopic area, which is anticipated to be an advanced nanofabrication technique.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 239
Author(s):  
Yineng Wang ◽  
Xi Cao ◽  
Walter Messina ◽  
Anna Hogan ◽  
Justina Ugwah ◽  
...  

Capillary electrochromatography (CEC) is a separation technique that hybridizes liquid chromatography (LC) and capillary electrophoresis (CE). The selectivity offered by LC stationary phase results in rapid separations, high efficiency, high selectivity, minimal analyte and buffer consumption. Chip-based CE and CEC separation techniques are also gaining interest, as the microchip can provide precise on-chip control over the experiment. Capacitively coupled contactless conductivity detection (C4D) offers the contactless electrode configuration, and thus is not in contact with the solutions under investigation. This prevents contamination, so it can be easy to use as well as maintain. This study investigated a chip-based CE/CEC with C4D technique, including silicon-based microfluidic device fabrication processes with packaging, design and optimization. It also examined the compatibility of the silicon-based CEC microchip interfaced with C4D. In this paper, the authors demonstrated a nanofabrication technique for a novel microchip electrochromatography (MEC) device, whose capability is to be used as a mobile analytical equipment. This research investigated using samples of potassium ions, sodium ions and aspirin (acetylsalicylic acid).


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 232
Author(s):  
Frances I. Allen

Helium ion beam induced deposition using the gaseous precursor pentamethylcyclopentasiloxane is employed to fabricate high aspect ratio insulator nanostructures (nanopillars and nanocylinders) that exhibit charge induced branching. The branched nanostructures are analyzed by transmission electron microscopy. It is found that the side branches form above a certain threshold height and that by increasing the flow rate of the precursor, the vertical growth rate and branching phenomenon can be significantly enhanced, with fractalesque branching patterns observed. The direct-write ion beam nanofabrication technique described herein offers a fast single-step method for the growth of high aspect ratio branched nanostructures with site-selective placement on the nanometer scale.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 430
Author(s):  
Jakub T. Domagalski ◽  
Elisabet Xifre-Perez ◽  
Lluis F. Marsal

The development of aluminum anodization technology features many stages. With the story stretching for almost a century, rather straightforward—from current perspective—technology, raised into an iconic nanofabrication technique. The intrinsic properties of alumina porous structures constitute the vast utility in distinct fields. Nanoporous anodic alumina can be a starting point for: Templates, photonic structures, membranes, drug delivery platforms or nanoparticles, and more. Current state of the art would not be possible without decades of consecutive findings, during which, step by step, the technique was more understood. This review aims at providing an update regarding recent discoveries—improvements in the fabrication technology, a deeper understanding of the process, and a practical application of the material—providing a narrative supported with a proper background.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 402
Author(s):  
César Magén ◽  
Javier Pablo-Navarro ◽  
José María De Teresa

Focused-electron-beam-induced deposition (FEBID) is the ultimate additive nanofabrication technique for the growth of 3D nanostructures. In the field of nanomagnetism and its technological applications, FEBID could be a viable solution to produce future high-density, low-power, fast nanoelectronic devices based on the domain wall conduit in 3D nanomagnets. While FEBID has demonstrated the flexibility to produce 3D nanostructures with almost any shape and geometry, the basic physical properties of these out-of-plane deposits are often seriously degraded from their bulk counterparts due to the presence of contaminants. This work reviews the experimental efforts to understand and control the physical processes involved in 3D FEBID growth of nanomagnets. Co and Fe FEBID straight vertical nanowires have been used as benchmark geometry to tailor their dimensions, microstructure, composition and magnetism by smartly tuning the growth parameters, post-growth purification treatments and heterostructuring.


Author(s):  
Chuang Qu ◽  
Dilan Ratnayake ◽  
Bruce Alphenaar ◽  
Shamus McNamara ◽  
Kevin Walsh

Abstract This paper presents the fabrication of nanochannels using glancing angle deposition (GLAD) with line seeds. GLAD is a bottom-up nanofabrication technique that creates nanometer-level features by the ballistic shadowing effect at oblique incident angles in physical vapor deposition (PVD) processes. GLAD exhibits the unique advantage to create 3D nanofeatures such as nanocolumns, helices, chevrons, and combinations, comparing to top-down nanonamufacturing techniques. Advanced seeding schemes allow GLAD to produce ordered nanostructure arrays. In this paper, we focus on studying the design rules of line seeds for GLAD, and the potential for creating nanochannels using GLAD nanoribbons grown from the line seeds. Unlike traditional one-dimensional (1D) point seeds, the cross-sectional profiles of line seeds have an important impact on the size and morphology of the nanoribbons. We demonstrated that line seeds with circular cross-sections and micrometer widths created from conventional photolithography can be used for creating ribbons with width less than 300 nm. The centimeter-long nanoribbons are used as nanotemplates for nanochannels. The process is compatible with various materials such as parylene C and silicon dioxide as the capping material, and rigid/flexible substrate choices for the nanochannels as well. The nanochannels created by GLAD with line seeds can potentially be used in nanofluidics, biological, and sensing applications.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3774 ◽  
Author(s):  
Amalio Fernández-Pacheco ◽  
Luka Skoric ◽  
José María De Teresa ◽  
Javier Pablo-Navarro ◽  
Michael Huth ◽  
...  

Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.


2020 ◽  
Vol 4 (1) ◽  
pp. 7 ◽  
Author(s):  
Shugo Sakaguchi ◽  
Koshi Kamiya ◽  
Tsuneaki Sakurai ◽  
Shu Seki

A particle induces a pack of chemical reactions in nanospace: chemical reactions confined into extremely small space provide an ultimate technique for the nanofabrication of organic matter with a variety of functions. Since the discovery of particle accelerators, an extremely high energy density can be deposited, even by a single isolated particle with MeV-ordered kinetic energy. However, this was considered to cause severe damages to organic molecules due to its relatively small bond energies, and lack of ability to control the reactions precisely to form the structures while retaining physico-chemical molecular functionalities. Practically, the severely damaged area along a particle trajectory: a core of a particle track has been simply visualized for the detection/dosimetry of an incident particle to the matters, or been removed to lead nanopores and functionalized by refilling/grafting of fresh organic/inorganic materials. The use of intra-track reactions in the so-called “penumbra” or “halo” area of functional organic materials has been realized and provided us with novel and facile protocols to provide low dimensional nano-materials with perfect size controllability in the 21st century. These protocols are now referred to as single particle nanofabrication technique (SPNT) and/or single particle triggered linear polymerization technique (STLiP), paving the way towards a new approach for nanomaterials with desired functionalities from original molecules. Herein, we report on the extremely wide applicability of SPNT/STLiP protocols for the future development of materials for opto-electronic, catalytic, and biological applications among others.


Author(s):  
Jacob M. Majikes ◽  
J. Alexander Liddle

While the design and assembly of DNA origami are straightforward, its relative novelty as a nanofabrication technique means that the tools and methods for designing new structures have not been codified as well as they have for more mature technologies, such as integrated circuits. While design approaches cannot be truly formalized until design-property relationships are fully understood, this document attempts to provide a step-by-step guide to designing DNA origami nanostructures using the tools available at the current state of the art.


Sign in / Sign up

Export Citation Format

Share Document