scholarly journals Full-Vectorial Fiber Mode Solver Based on a Discrete Hankel Transform

Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 439
Author(s):  
Michael Steinke

It is crucial to be time and resource-efficient when enabling and optimizing novel applications and functionalities of optical fibers, as well as accurate computation of the vectorial field components and the corresponding propagation constants of the guided modes in optical fibers. To address these needs, a novel full-vectorial fiber mode solver based on a discrete Hankel transform is introduced and validated here for the first time for rotationally symmetric fiber designs. It is shown that the effective refractive indices of the guided modes are computed with an absolute error of less than 10−4 with respect to analytical solutions of step-index and graded-index fiber designs. Computational speeds in the order of a few seconds allow to efficiently compute the relevant parameters, e.g., propagation constants and corresponding dispersion profiles, and to optimize fiber designs.

1992 ◽  
Vol 247 ◽  
Author(s):  
Yasuhiro Koike

ABSTRACTHigh-bandwidth graded-index (GI) polymer optical fiber (POF) and single-mode POF with good mechanical properties were successfully obtained by our interfacial-gel polymerization technique. The bandwidth of the GI POF is about 1 GHz · km which is two hundred times larger than that of the conventional step-index (SI) POF. The minimum attenuation of transmission is 56 dB/km at 688-nm wavelength and 94 dB/km at 780-nm wavelength. The single-mode POF in which the core diameter was 3–15 μ m and the attenuation of transmission was 200 dB/km at 652-nm wavelength was successfully obtained for the first time.


2020 ◽  
Vol 38 (6) ◽  
pp. 1454-1460
Author(s):  
Alexander A. Shibelgut ◽  
Dmitry A. Konkin ◽  
Rudolph Victorovich Litvinov ◽  
Roman Kruglov ◽  
Christian-Alexander Bunge ◽  
...  

1977 ◽  
Vol 67 (9) ◽  
pp. 1192 ◽  
Author(s):  
S. Choudhary ◽  
L. B. Felsen

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3952 ◽  
Author(s):  
Andy Schreier ◽  
Sascha Liehr ◽  
Aleksander Wosniok ◽  
Katerina Krebber

In this paper perfluorinated graded-index polymer optical fibers are characterized with respect to the influence of relative humidity changes on spectral transmission absorption and Rayleigh backscattering. The hygroscopic and thermal expansion coefficient of the fiber are determined to be C H E = (7.4 ± 0.1) · 10 − 6 %r.h.−1 and C T E = (22.7 ± 0.3) · 10 − 6 K−1, respectively. The influence of humidity on the Brillouin backscattering power and linewidth are presented for the first time to our knowledge. The Brillouin backscattering power at a pump wavelength of 1319 nm is affected by temperature and humidity. The Brillouin linewidth is observed to be a function of temperature but not of humidity. The strain coefficient of the BFS is determined to be C S = (−146.5 ± 0.9) MHz/% for a wavelength of 1319 nm within a strain range from 0.1% to 1.5%. The obtained results demonstrate that the humidity-induced Brillouin frequency shift is predominantly caused by the swelling of the fiber over-cladding that leads to fiber straining.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 897-905
Author(s):  
Hassan Khan ◽  
Saima Mustafa ◽  
Izaz Ali ◽  
Poom Kumam ◽  
Dumitru Baleanu ◽  
...  

Abstract In this article, a modified variational iteration method along with Laplace transformation is used for obtaining the solution of fractional-order nonlinear convection–diffusion equations (CDEs). The proposed technique is applied for the first time to solve fractional-order nonlinear CDEs and attain a series-form solution with the quick rate of convergence. Tabular and graphical representations are presented to confirm the reliability of the suggested technique. The solutions are calculated for fractional as well as for integer orders of the problems. The solution graphs of the solutions at various fractional derivatives are plotted. The accuracy is measured in terms of absolute error. The higher degree of accuracy is observed from the table and figures. It is further investigated that fractional solutions have the convergence behavior toward the solution at integer order. The applicability of the present technique is verified by illustrative examples. The simple and effective procedure of the current technique supports its implementation to solve other nonlinear fractional problems in different areas of applied science.


Sign in / Sign up

Export Citation Format

Share Document