scholarly journals Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 38
Author(s):  
Abdul Mu’iz Maidi ◽  
Norazanita Shamsuddin ◽  
Wei-Ru Wong ◽  
Shubi Kaijage ◽  
Feroza Begum

A highly sensitive non-complex cored photonic crystal fiber sensor for hazardous chemical sensing with water, ethanol, and benzene analytes has been proposed and is numerically analyzed using a full-vector finite element method. The proposed fiber consists of a hexagonal core hole and two cladding air hole rings, operating in the lower operating wavelength of 0.8 to 2.6 µm. It has been shown that the structure has high relative sensitivity of 94.47% for water, 96.32% for ethanol and 99.63% for benzene, and low confinement losses of 7.31 × 10−9 dB/m for water, 3.70 × 10−10 dB/m ethanol and 1.76 × 10−13 dB/m benzene. It also displays a high power fraction and almost flattened chromatic dispersion. The results demonstrate the applicability of the proposed fiber design for chemical sensing applications.

2017 ◽  
Vol 63 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Andrés F. Betancur-Pérez ◽  
Juan F. Botero-Cadavid ◽  
Erick Reyes-Vera ◽  
Nelson Gómez-Cardona

Abstract In this paper, the capabilities of chromatic dispersion compensation of a photonic crystal fiber with a hexagonal distribution of circular air holes was investigated. The vector finite element method with scattering boundary condition was used to analyze a set of configurations of the fiber in which the distance between air holes’ centers was modified. With this method it was possible to obtain the values of chromatic dispersion and confinement factor in the C fiber band. The best suited configurations were tested in a 160 km optical link with a bit rate of 40 Gbps. The performance was evaluated by measuring the bit error rate for a set of 20 channels with channel spacing of 100 GHz. The simulation results showed that is possible to reach values of chromatic dispersion as low as $- 850{{{\rm{ps}}} \over {{\rm{nm}} \middot {\rm{km}}}}$ , confinement losses close to 10−3 dB/km and good BER results in the order of 10−17 for a wavelength of 1550 nm.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1799
Author(s):  
Tianyu Yang ◽  
Liang Zhang ◽  
Yunjie Shi ◽  
Shidi Liu ◽  
Yuming Dong

A photonic crystal fiber (PCF) with high relative sensitivity was designed and investigated for the detection of chemical analytes in the terahertz (THz) regime. To ease the complexity, an extremely simple cladding employing four struts is adopted, which forms a rectangular shaped core area for filling with analytes. Results of enormous simulations indicate that a minimum 87.8% relative chemical sensitivity with low confinement and effective material absorption losses can be obtained for any kind of analyte, e.g., HCN (1.26), water (1.33), ethanol (1.35), KCN (1.41), or cocaine (1.50), whose refractive index falls in the range of 1.2 to 1.5. Besides, the PCF can also achieve high birefringence (∼0.01), low and flat dispersion, a large effective modal area, and a large numerical aperture within the investigated frequency range from 0.5 to 1.5 THz. We believe that the proposed PCF can be applied to chemical sensing of liquid and THz systems requiring wide-band polarization-maintaining transmission and low attenuation.


2011 ◽  
Vol 301-303 ◽  
pp. 50-54
Author(s):  
Hong Jun Zheng ◽  
Chong Qing Wu ◽  
Zhi Wang ◽  
Jian Wang ◽  
Shan Liang Liu ◽  
...  

We present a novel single-polarization single-mode photonic crystal fiber (SPSM-PCF) design with four lines of small elliptical air-holes in order to obtain wider bandwidth for SPSM operation. The characteristics of the proposed SPSM-PCF are studied by using a full-vector finite element method (FEM) with perfect matched layer (PML) boundary conditions. At the wavelength of 1.55 µm, the confinement loss of the x-polarized mode is lower than 0.5 dB/km, whereas the loss of the y-polarized mode is larger than 50 dB/km. Compared with the case of x-polarized mode, the y-polarized mode can be suppressed in the PCF. Then, the SPSM operation is obtained. The proposed PCF can perform SPSM operation with broadband of 600 nm for considering the confinement loss ratio and the loss difference.


2020 ◽  
Vol 12 (4) ◽  
pp. 94
Author(s):  
Mohammad Saiful Islam ◽  
Anwar Sadath ◽  
Md. Rakibul Islam ◽  
Mohammad Faisal

Nowadays photonic crystal fiber (PCF) is used for sensing purposes in different fields. In this work, we have proposed a PCF based chemical (Benzene and Ethanol) sensor. Finite Element Method (FEM) based software COMSOL 5.3a is used to investigate the numerical characteristics for the proposed structure. From the numerical analysis, we obtained high sensitivity with low losses for an optimum core diameter of 210 µm. Our proposed PCF works on a broad range of core diameters and THz frequency spectra. The fabrication of this model is very simple due to its simplistic design structure. Full Text: PDF ReferencesMd.F.H. Arif, Md.J.H. Biddut, "A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications", Sensing Bio-Sensing Res. 12, 8 (2017). CrossRef P. Kumar, Md.H. Bikash, K. Ahmed, S. Sen, "A Novel Hexahedron Photonic Crystal Fiber in Terahertz Propagation: Design and Analysis", Photonics 6(1), 32 (2019). CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, "Hybrid photonic crystal fiber in chemical sensing", SpringerPlus 5, 748 (2016). CrossRef Md.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, "Ultra low-loss hybrid core porous fiber for broadband applications", App. Opt. 56(4), 1232 (2017). CrossRef S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, "THz porous fibers: design, fabrication and experimental characterization", Opt. Expr. 17(16), 14053 (2009). CrossRef


2021 ◽  
pp. 2150473
Author(s):  
Sinuo An ◽  
Chunjie Hu ◽  
Lei Zhou ◽  
Zao Yi ◽  
Chao Liu ◽  
...  

A polarization filter based on simple structure photonic crystal fiber (PCF) coated with gold air holes is designed in this work. The full vector finite element method (FEM) is used to calculate the characteristic parameters of PCF. In the final numerical simulation results, the loss peak in the [Formula: see text] polarization direction is 2305.72 dB/cm and the [Formula: see text]-polarized loss is as low as 75.86 dB/cm at 1.31 [Formula: see text]m. For the fiber length of 1000 [Formula: see text]m, the CT reaches 1936.83 dB and a wide bandwidth greater than 20 dB can provide above 800 nm. The content of this paper can provide a new idea for filter structure design.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


2020 ◽  
pp. 2150077
Author(s):  
Yifeng Ding ◽  
Chao Liu ◽  
Lin Yang ◽  
Jingwei Lv ◽  
Guanglai Fu ◽  
...  

Two photonic crystal fiber (PCF) polarization beam splitters (PBSs) featuring ultra-short length and ultra-high extinction ratios at wavelengths of 1.31 [Formula: see text]m and 1.55 [Formula: see text]m are designed and investigated. Non-silicon materials, such as gallium arsenide (GaAs) and nematic liquid crystal (NLC), are incorporated into the structure to ensure operation of the splitters in the communication bandwidth. Based on the full-vector finite element method (FEM), numerical simulation is carried out to optimize the structural parameters systematically. Specifically, for the splitter operating at 1.31 [Formula: see text]m, the optimal optical fiber length, extinction ratio, and bandwidth are 27.87234 [Formula: see text]m, [Formula: see text] dB, and 152 nm, respectively. In comparison, the optimal fiber length, extinction ratio, and bandwidth of the splitter at the wavelength of 1.55 [Formula: see text]m are 15.59356 [Formula: see text]m, [Formula: see text] dB, and 200 nm, respectively. The results reveal that the splitters have great potential in environmental monitoring, biochemical detection, and optical communication.


2013 ◽  
Vol 760-762 ◽  
pp. 185-189
Author(s):  
Jian Hui Zeng ◽  
Xu You Li ◽  
Wen Bin Hu

A novel high-birefringent photonic crystal fiber (PCF) was proposed and analyzed by full-vector finite element method (FEM). The modal field and birefringence properties were investigated. All of air holes in proposed PCF are round, and their diameters are the same. It is greatly reduce the difficulty of fabrication. According to the results of numerical analysis, it can be observed that the mode birefringence of this novel PCF can be easily achieve the order of 10-3at 1.55μm. This research provides effective theoretical method for the fabrication, development and construction of high-birefringence photonic crystal fiber.


Sign in / Sign up

Export Citation Format

Share Document