scholarly journals Abramovsky—Gribov—Kancheli Theorem in the Physics of Black Holes

Physics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 253-270
Author(s):  
Abramovsky

The proof of the Abramovsky—Gribov—Kancheli (AGK) theorem for black hole physics is given. Based on the AGK relations, a formula for the luminosity of a black hole as a function of the mass of the black hole is derived. The correspondence to experimental data is considered. It is shown that the black holes of the galaxies NGC3842 and NGC4889 do not differ from those of the other galaxies.

2015 ◽  
Vol 24 (12) ◽  
pp. 1544007 ◽  
Author(s):  
Shahar Hod

The holographic principle has taught us that, as far as their entropy content is concerned, black holes in (3 + 1)-dimensional curved spacetimes behave as ordinary thermodynamic systems in flat (2 + 1)-dimensional spacetimes. In this paper, we point out that the opposite behavior can also be observed in black-hole physics. To show this we study the quantum Hawking evaporation of near-extremal Reissner–Nordström (RN) black holes. We first point out that the black-hole radiation spectrum departs from the familiar radiation spectrum of genuine (3 + 1)-dimensional perfect black-body emitters. In particular, the would be black-body thermal spectrum is distorted by the curvature potential which surrounds the black-hole and effectively blocks the emission of low-energy quanta. Taking into account the energy-dependent gray-body factors which quantify the imprint of passage of the emitted radiation quanta through the black-hole curvature potential, we reveal that the (3 + 1)-dimensional black holes effectively behave as perfect black-body emitters in a flat (9 + 1)-dimensional spacetime.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050152
Author(s):  
Koichi Nagasaki

We consider the growth of the action for black hole space–time with a fundamental string. Our interest is to find the difference of the behavior between black holes with three different topologies in the scenario of complexity-action conjecture. These black holes have positive, negative and zero curvatures. We would like to calculate the action growth of these systems with a probe fundamental string according to the complexity-action conjecture. We find that for the case where the black holes have the toroidal horizon structure this probe string behaves very differently from the other two cases.


2016 ◽  
Vol 25 (12) ◽  
pp. 1644015
Author(s):  
Roberto Emparan ◽  
Marina Martínez

The fusion of two black holes — a signature phenomenon of General Relativity — is usually regarded as a process so complex that nothing short of a supercomputer simulation can accurately capture it. In this essay, we explain how the event horizon of the merger can be found in an exact analytic way in the limit where one of the black holes is much smaller than the other. Remarkably, the ideas and techniques involved are elementary: the equivalence principle, null geodesics in the Schwarzschild solution, and the notion of event horizon itself. With these, one can identify features such as the line of caustics at which light rays enter the horizon, and find indications of universal critical behavior when the two black holes touch.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750164
Author(s):  
Sara Saghafi ◽  
Kourosh Nozari

By defining a noncommutative symplectic structure, we study thermodynamics of Schwarzschild black hole in a Snyder noncommutative phase space for the first time. Since natural cutoffs are the results of compactness of symplectic manifolds in phase space, the physics of black holes in such a space would be affected mainly by these cutoffs. In this respect, this study provides a basis for more deeper understanding of the black hole thermodynamics in a pure mathematical viewpoint.


2020 ◽  
Vol 643 ◽  
pp. A31
Author(s):  
A. Kotrlová ◽  
E. Šrámková ◽  
G. Török ◽  
K. Goluchová ◽  
J. Horák ◽  
...  

We explore the influence of nongeodesic pressure forces present in an accretion disc on the frequencies of its axisymmetric and nonaxisymmetric epicyclic oscillation modes. We discuss its implications for models of high-frequency quasi-periodic oscillations (QPOs), which have been observed in the X-ray flux of accreting black holes (BHs) in the three Galactic microquasars, GRS 1915+105, GRO J1655−40, and XTE J1550−564. We focus on previously considered QPO models that deal with low-azimuthal-number epicyclic modes, |m| ≤ 2, and outline the consequences for the estimations of BH spin, a ∈ [0, 1]. For four out of six examined models, we find only small, rather insignificant changes compared to the geodesic case. For the other two models, on the other hand, there is a significant increase of the estimated upper limit on the spin. Regarding the falsifiability of the QPO models, we find that one particular model from the examined set is incompatible with the data. If the spectral spin estimates for the microquasars that point to a >  0.65 were fully confirmed, two more QPO models would be ruled out. Moreover, if two very different values of the spin, such as a ≈ 0.65 in GRO J1655−40 and a ≈ 1 in GRS 1915+105, were confirmed, all the models except one would remain unsupported by our results. Finally, we discuss the implications for a model that was recently proposed in the context of neutron star (NS) QPOs as a disc-oscillation-based modification of the relativistic precession model. This model provides overall better fits of the NS data and predicts more realistic values of the NS mass compared to the relativistic precession model. We conclude that it also implies a significantly higher upper limit on the microquasar’s BH spin (a ∼ 0.75 vs. a ∼ 0.55).


Author(s):  
Sascha Kulas

In cosmology dark energy and dark matter are included in the CDM model, but they are still completely unknown. On the other hand the trans-Planckian problem leads to unlikely high photon energies for black holes. We introduce a model with quantized black hole matter. This minimizes the trans- Planckian problem extremely and leads to a scalar field in the oscillating universe model. We show that the scalar field has the same characteristics as a vacuum energy field and leads to the same Casimir effect. Shortly after the beginning of the big bounce this field decays locally and leads to the production of dark matter. In this model no inflation theory is needed. We emphasize that this model is mainly a phenomenological approach with the aim of new impetus to the discussion.


2020 ◽  
Vol 29 (14) ◽  
pp. 2030013
Author(s):  
Samir D. Mathur

Cosmology presents us with several puzzles that are related to the fundamental structure of quantum theory. We discuss three such puzzles, linking them to effects that arise in black hole physics. We speculate that puzzles in cosmology may be resolved by the vecro structure of the vacuum that resolves the information paradox and the “bags of gold” problem for black holes.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950216
Author(s):  
Tairan Liang ◽  
Wei Xu

It has been found recently that the entropy relations of horizons have the universality of black hole mass-independence for many black holes. These universal entropy relations have some geometric and CFT understanding, which may provide further insight into the quantum physics of black holes. In this paper, we present the leading order of black hole entropy sum relations under the quantum corrections. It is found that the modified entropy sum becomes mass-dependent for some black holes in asymptotical (A)dS and flat space–times. We also give an example that the modified entropy sum of regular Bardeen AdS black holes is mass-independent, which may be quantized in the form of the electric charge and the cosmological constant.


Sign in / Sign up

Export Citation Format

Share Document