scholarly journals Regulation of Sixth Seminal Root Formation by Jasmonate in Triticum aestivum L.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Alexey Pigolev ◽  
Dmitry Miroshnichenko ◽  
Sergey Dolgov ◽  
Tatyana Savchenko

A well-developed root system is an important characteristic of crop plants, which largely determines their productivity, especially under conditions of water and nutrients deficiency. Being Poaceous, wheat has more than one seminal root. The number of grown seminal roots varies in different wheat accessions and is regulated by environmental factors. Currently, the molecular mechanisms determining the number of germinated seminal roots remain poorly understood. The analysis of the root system development in germinating seeds of genetically modified hexaploid wheat plants with altered activity of jasmonate biosynthesis pathway and seeds exogenously treated with methyl jasmonate revealed the role of jasmonates in the regulation of sixth seminal root development. This regulatory effect strongly depends on the jasmonate concentration and the duration of the exposure to this hormone. The maximum stimulatory effect of exogenously applied methyl jasmonate on the formation of the sixth seminal root was achieved at 200 μM concentration after 48 h of treatment. Further increase in concentration and exposure time does not increase the stimulating effect. While 95% of non-transgenic plants under non-stress conditions possess five or fewer seminal roots, the number of plants with developed sixth seminal root reaches up to 100% when selected transgenic lines are treated with methyl jasmonate.

1996 ◽  
Vol 65 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Yasuhiro IZUMI ◽  
Yasuhiro KONO ◽  
Akira YAMAUCHI ◽  
Morio IIJIMA

Author(s):  
S. Acikbas ◽  
M.A. Ozyazici ◽  
H. Bektas

Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions.Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatlý) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication.Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatlý (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatlý. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.


2020 ◽  
Vol 02 (03) ◽  
pp. 35-38
Author(s):  
Kamala Arastun Sadigov ◽  

The presented article provides seed propagation, seedling morphology and growth dynamics, root system development in connection with the introduction of Hippophae rhamnoides L. species found in our natural flora in Absheron. The study found that the species Hippophae rhamnoides L. is well adapted to the soil and climatic conditions of Absheron and can be grown in cultural conditions. Key words: Hippophae rhamnoides L., introdiction, seed, repoduction, morphology, dewelopment, root system


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Fernando Marcelo Chiamolera ◽  
Antonio Baldo Geraldo Martins ◽  
Pedro Luiz Martins Soares ◽  
Tatiana Pagan Loeiro da Cunha-Chiamolera

ABSTRACT Root-knot nematode Meloidogyne enterolobii is the main phytosanitary problem of guava cultivation in Brazil. Among the strategies to manage the problem, the best prospects are in identifying or developing cultivars or rootstocks that are resistant to this nematode. To identify plants with potential as rootstocks for guava, the reaction of araçá (wild guava) to M. enterolobii was assessed in a greenhouse experiment. Seven araçá species were evaluated (Eugenia stipitata, Psidium acutangulum, P. cattleyanum ‘yellow’, P. friedrichsthalianum, P. guajava var. minor, P. guineense, and Psidium sp.). The plants were inoculated with a suspension of 3,000 eggs of M. enterolobii, using eggplant as control treatment. The parameters fresh root mass, number of eggs and second stage juveniles (J2) per root system, the reproduction factor (RF = Pf/Pi), and araçá reaction were determined during the experiment. RF of the araçá species E. stipitata, P. cattleyanum ‘yellow’, and P. friedrichsthalianum was less than one (RP < 1), therefore resistant to M. enterolobii. The araçá trees had good root system development and the susceptible plants showed many root galls, high number of eggs and J2, and Fusarium solani and Rhizoctonia solani root rot. The araçá species, P. cattleyanum ‘yellow’, P. friedrichsthalianum, and E. stipitata are resistant to M. enterolobii and can be tested as potential guava rootstocks.


Root Research ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 111-118
Author(s):  
Shigenori Morita ◽  
Nobuhito Sekiya ◽  
Jun Abe

1988 ◽  
Vol 15 (4) ◽  
pp. 585 ◽  
Author(s):  
EG Barrett-Lennard ◽  
PD Leighton ◽  
F Buwalda ◽  
J Gibbs ◽  
W Armstrong ◽  
...  

This paper evaluates the effects of hypoxia (imposed by flushing N2 gas through the nutrient solution) on the growth and carbohydrate status of wheat (Triticum aestivum L.), and the reversibility of these effects once aeration is resumed. Plants were transferred to hypoxic nutrient solutions (containing 0.003 mol O2 m-3) at the early tillering stage, when they had 3-4 leaves, well developed seminal roots, and a few crown roots. Hypoxia for 10-14 days had little adverse effect on shoot growth, whereas the seminal roots stopped growing, i.e. elongating and increasing in dry weight; in contrast, the crown roots elongated to a maximum of 9 cm and continued to increase in dry weight. Hypoxia increased the porosity of crown roots 2-3-fold compared with those grown under aerated conditions; in contrast, the porosity of seminal roots was unaffected. Oxygen concentrations in the gas filled pores of hypoxic crown roots (65 mm or longer) were estimated from measurements of radial oxygen loss using cylindrical platinum electrodes. Oxygen concentrations in the root tips were substantially lower than the critical oxygen pressures required for maximum respiration. Further, both oxygen concentrations in root tips and rates of root elongation were higher in shorter than in longer roots. Plants grown in hypoxic nutrient solutions had substantially higher sugar concentrations in shoots and roots than plants grown in aerated solutions. Sugars were not deficient in hypoxic roots since concentrations over a diurnal cycle remained higher than in aerated roots in both the bulk of the seminal and crown roots, and in the tips of the crown roots. Furthermore, tips of seminal roots had similar sugar concentrations when exposed to either aerated or hypoxic solutions. Hypoxia presumably killed seminal root apices, since the seminal axes did not resume elongation once aeration was restored. In contrast, crown roots resumed elongation when aeration was resumed. Although seminal root tips were moribund, the bulk of the seminal root was still alive. Following the transfer to aerated solutions, there was a rapid increase in the dry weight of both crown and seminal roots, in the latter case due to the proliferation of laterals.


2019 ◽  
pp. 1375-1382
Author(s):  
Tulio Martinez Santos ◽  
Edna Maria Bonfim Silva ◽  
Tonny José Araújo da Silva ◽  
Ana Paula Alves Barreto Damasceno

Soil compaction is a big limitation to food production in agriculture. Wood ash is an agro-industrial residue generated by the burning of biomass in boilers for energy production. It can be used as a corrective agent and fertilizer of the soil. In this context, the objective of this study was to evaluate the root system of safflower cultivated under bulk density levels and wood ash doses in dystrophic Oxisol. The experiment was conducted in a greenhouse with a randomized block design under a 5x5 factorial scheme composed of 5 wood ash doses (0, 8, 16, 24, 32 g dm-3) and 5 bulk density levels (1.0, 1.2, 1.4, 1.6, 1.8 Mg m-3) with 4 replicates. The soil was collected from 0-0.20 m depth layer. Later it was incubated with the respective wood ash doses. Each experimental unit consisted of a pot made of three PVC (polyvinyl chloride) rings, in which the layers of 0.1-0.2 m were compacted. At 75 days after emergence, the plants were cut, their roots washed and the volume and dry mass checked. The results were submitted to analysis of variance and subsequent regression test, both at 5% probability. Soil densities negatively influenced the root system development and culture of safflower. Application of wood ash doses of 20 to 24 g dm-3 significantly improved root development of plant.


Sign in / Sign up

Export Citation Format

Share Document