scholarly journals Hydroscapes: A Useful Metric for Distinguishing Iso-/Anisohydric Behavior in Almond Cultivars

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1249
Author(s):  
Carolina Álvarez-Maldini ◽  
Manuel Acevedo ◽  
Manuel Pinto

As a consequence of climate change, water scarcity has increased the use of the iso-/anisohydric concept with the aim of identifying anisohydric or drought-tolerant genotypes. Recently, Meinzer and colleagues developed a metric for discriminating between iso- and anisohydric behavior called the hydroscape, which describes a range in which stomata control leaf water potential (Ψ) with decreasing water availability, and it is linked to several water-regulation and drought-tolerance traits. Thus, our objective was to test the usefulness of the hydroscape in discriminating between iso- and anisohydric Prunus dulcis cultivars, a species that is widely cultivated in Mediterranean central Chile due to its ability to withstand water stress. Through a pot desiccation experiment, we determined that the hydroscape was able to discriminate between two contrasting Prunus cultivars; the more anisohydric cultivar had a hydroscape 4.5 times greater than that of the other cultivar, and the hydroscape correlated with other metrics of plant water-use strategies, such as the maximum range of daily Ψ variation and the Ψ at stomatal closure. Moreover, the photosynthesis rates were also differently affected between cultivars. The more isohydric cultivar, which had a smaller hydroscape, displayed a steeper photosynthesis reduction at progressively lower midday Ψ. This methodology could be further used to identify drought-tolerant anisohydric Prunus cultivars.

Oecologia ◽  
2002 ◽  
Vol 130 (3) ◽  
pp. 329-336 ◽  
Author(s):  
H. Heilmeier ◽  
A. Wartinger ◽  
M. Erhard ◽  
R. Zimmermann ◽  
R. Horn ◽  
...  

2020 ◽  
Vol 126 (1) ◽  
pp. 179-190
Author(s):  
Karin S L Johansson ◽  
Mohamed El-Soda ◽  
Ellen Pagel ◽  
Rhonda C Meyer ◽  
Kadri Tõldsepp ◽  
...  

Abstract Background and Aims The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of gs to increased atmospheric CO2 have not been explored. Methods We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of gs. Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term gs responses to elevated CO2, as well as other stomata-related traits. Key Results Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short- and long-term responses were associated with a QTL at the end of chromosome 2. The location of this QTL was confirmed using near-isogenic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. Conclusions We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1534 ◽  
Author(s):  
Marcelo Sepulveda M. ◽  
Horacio Bown ◽  
Bonifacio Fernandez L.

Soil water availability controls plant productivity in seasonally dry ecosystems, although plant water use at different soil depths and times is, to the best of our knowledge, not clearly understood. Environmental variables at the canopy level and the soil volumetric water content (VWC) at five different soil depths were continuously recorded for three years (2011–2014) in an Acacia caven savanna site in central Chile. Stomatal conductance ( g s ) was measured every hour during daytime for 42 days distributed across the study period. Values of g s were weakly controlled by photosynthetically active radiation, vapor pressure deficit, and leaf temperature when considering the whole series. The variance proportion being explained increased from 5% to 20% if the whole series was partitioned into a dry and a wet season. According to the above, A. caven exhibited a more anisohydric behavior than previously thought. When we added the VWC in the root zone, to the g s atmospheric variables model, R2 increased to 47% when separately considering the dry and wet seasons. However, we did not find a differentiated use of water in the root zone, but instead a joint activity of the radicular system within the top 100 cm of the soil controlling g s .


2008 ◽  
Vol 35 (7) ◽  
pp. 565 ◽  
Author(s):  
M. Lucília Rodrigues ◽  
Tiago P. Santos ◽  
Ana P. Rodrigues ◽  
Claudia R. de Souza ◽  
Carlos M. Lopes ◽  
...  

Effects of irrigation strategies on stomata and plant water use were studied in field-grown grapevines (Vitis vinifera L.). We assessed the importance of root-derived chemical signals vs. hydraulic signalling in stomatal regulation. The experiment included two treatments with the same water added to the soil (50% ETc) applied either to the whole root system (DI) or to half of the roots, alternating irrigation side every 15 days (PRD). Well-watered plants (FI) (100% ETc) and non-irrigated grapevines (NI) were also studied. Partial stomata closure occurred in both PRD and DI plants. [ABA] of xylem sap remained constant during the day and was maintained throughout the season, with higher values in NI plants. Xylem sap pH was not affected by soil water availability. A positive correlation between ψpd and maximum g s was found, indicating that grapevine stomata strongly respond to plant water status. In contrast, ABA did not explain stomatal control at veraison. At mid-ripening g s was significantly correlated with ABA, apparently interacting with the rise in xylem sap pH. Therefore, our data suggest that hydraulic feedback and feed-forward root-to-shoot chemical signalling mechanisms might be involved in the control of stomata in response to decreased soil water availability, hydraulic signals playing the dominant role.


2016 ◽  
Vol 11 (1) ◽  
pp. 168-180 ◽  
Author(s):  
Gregory A. Gambetta

AbstractPlant adaptation to global climate change has become one of the most pressing and important topics in biology. Changes in climate that lead to increased crop water use or decreases in water availability will increase the frequency and magnitude of plant water stress. Water stress reduces plant growth and crop yield, and for perennial crops like grape, there is an added consideration: their long-term ability to tolerate and recover from this stress. This primer introduces plant water relations basics, explaining how grape physiology is affected by water stress and discussing the physiological foundations for the development of drought-tolerant cultivars and rootstocks. (JEL Classifications: Q13, Q54)


Author(s):  
Luying Sun ◽  
Fengbin Song ◽  
Xiancan Zhu ◽  
Shengqun Liu ◽  
Fulai Liu ◽  
...  

2016 ◽  
Vol 24 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Jonathan D.M. Helander ◽  
Aditya S. Vaidya ◽  
Sean R. Cutler

Sign in / Sign up

Export Citation Format

Share Document