scholarly journals Unraveling the Influence of Land-Use Change on δ13C, δ15N, and Soil Nutritional Status in Coniferous, Broadleaved, and Mixed Forests in Southern China: A Field Investigation

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1499
Author(s):  
Taimoor Farooq ◽  
Xiaoyong Chen ◽  
Awais Shakoor ◽  
Yong Li ◽  
Jun Wang ◽  
...  

Natural isotopic abundance in soil and foliar can provide integrated information related to the long-term alterations of carbon (C) and nitrogen (N) cycles in forest ecosystems. We evaluated total carbon (TC), total nitrogen (TN), and isotopic natural abundance of C (δ13C) and N (δ15N) in soil and foliar of coniferous plantation (CPF), natural broadleaved forest (NBF), and mixed forest stands at three different soil depths (i.e., 0–10, 10–20, and 20–40 cm). This study also explored how soil available nutrients are affected by different forest types. Lutou forest research station, located in Hunan Province, central China, was used as the study area. Results demonstrated that the topsoil layer had higher TC and TN content in the mixed forest stand, resulting in a better quality of organic materials in the topsoil layer in the mixed forest than NBF and CPF. In general, soil TC, TN, and δ15N varied significantly in different soil depths and forest types. However, the forest type did not exhibit any significant effect on δ13C. Overall, soil δ13C was significantly enriched in CPF, and δ15N values were enriched in mixed forest. Foliar C content varied significantly among forest types, whereas foliar N content was not significantly different. No big differences were observed for foliar δ15N and δ13C across forest types. However, foliar δ13C and δ15N were positively related to soil δ13C and δ15N, respectively. Foliar N, soil and foliar C:N ratio, soil moisture content (SMC), and forest type were observed as the major influential factors affecting isotopic natural abundance, whereas soil pH was not significantly correlated. In addition, forest type change and soil depth increment had a significant effect on soil nutrient availability. In general, soil nutrient availability was higher in mixed forest. Our findings implied that forest type and soil depth alter TC, TN, and soil δ15N, whereas δ13C was only driven by soil depth. Moreover, plantations led to a decline in soil available nutrient content compared with NBF and mixed forest stands.

2007 ◽  
Vol 23 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Israel Cárdenas ◽  
Julio Campo

The tree Lysiloma microphyllum (Fabaceae) dominates in the seasonally tropical dry forests of central Mexico. In this study foliar N and P concentrations (on leaf mass basis), foliar N and P resorption efficiency and proficiency, as well as the decomposition of senescent leaves of L. microphyllum were studied in primary and in regenerating, secondary seasonally tropical dry forests. Our study included an area of early successional forest (10 y old), with phosphorus-poor soils and comparatively abundant nitrogen, an area of late-successional forest (∼60 y old), in which soil P and N were comparatively abundant, and an area of primary forest, in which soil P was comparatively abundant and N was less abundant than in the secondary counterparts. N and P concentrations in mature leaves varied across forests, reflecting soil nutrient availability. Nitrogen concentration in senescent leaves did not change among sites, which led to very different patterns of N resorption. In contrast, P concentration in senescent leaves was lower in the early than in late-successional and primary forests, which resulted in similar patterns of resorption. Leaf decomposition increased from 70% mass loss in the first year in the early successional to ∼80% in the same period in late-successional and primary forests. The element loss during decomposition change across forests in the following order: for N, early successional = late-successional > primary forest, and for P, primary forest > late-successional > early successional forest. Overall, the pattern of variation in leaf chemistry and nutrient release on the forest floor among sites is consistent with soil nutrient availability along this sequence, while decomposition rate may be related with the P concentration in senescent leaves.


2021 ◽  
Vol 13 (4) ◽  
pp. 2226
Author(s):  
Joisman Fachini ◽  
Thais Rodrigues Coser ◽  
Alyson Silva de Araujo ◽  
Ailton Teixeira do Vale ◽  
Keiji Jindo ◽  
...  

The thermochemical transformation of sewage sludge (SS) to biochar (SSB) allows exploring the advantages of SS and reduces possible environmental risks associated with its use. Recent studies have shown that SSB is nutrient-rich and may replace mineral fertilizers. However, there are still some questions to be answered about the residual effect of SSB on soil nutrient availability. In addition, most of the previous studies were conducted in pots or soil incubations. Therefore, the residual effect of SSB on soil properties in field conditions remains unclear. This study shows the results of nutrient availability and uptake as well as maize yield the third cropping of a three-year consecutive corn cropping system. The following treatments were compared: (1) control: without mineral fertilizer and biochar; (2) NPK: with mineral fertilizer; (3) SSB300: with biochar produced at 300 °C; (4) SSB300+NPK; (5) SSB500: with biochar produced at 500 °C; and (6) SSB500+NPK. The results show that SSB has one-year residual effects on soil nutrient availability and nutrient uptake by maize, especially phosphorus. Available soil P contents in plots that received SSB were around five times higher than the control and the NPK treatments. Pyrolysis temperature influenced the SSB residual effect on corn yield. One year after suspending the SSB application, SSB300 increased corn yield at the same level as the application of NPK. SSB300 stood out and promoted higher grain yield in the residual period (8524 kg ha−1) than SSB500 (6886 kg ha−1). Regardless of pyrolysis temperature, biochar boosted the mineral fertilizer effect resulting in higher grain yield than the exclusive application of NPK. Additional long-term studies should be focused on SSB as a slow-release phosphate fertilizer.


2021 ◽  
Author(s):  
Amanda E. Knauf ◽  
Creighton M. Litton ◽  
Rebecca J. Cole ◽  
Jed P. Sparks ◽  
Christian P. Giardina ◽  
...  

Pedosphere ◽  
2016 ◽  
Vol 26 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Adel Rabie A. USMAN ◽  
Mohammad I. AL-WABEL ◽  
Yong S. OK ◽  
Abdulaziz AL-HARBI ◽  
Mahmoud WAHB-ALLAH ◽  
...  

2012 ◽  
Vol 82 ◽  
pp. 37-42 ◽  
Author(s):  
Priit Kupper ◽  
Gristin Rohula ◽  
Liina Saksing ◽  
Arne Sellin ◽  
Krista Lõhmus ◽  
...  

2008 ◽  
Vol 16 (NA) ◽  
pp. 157-179 ◽  
Author(s):  
David P. Kreutzweiser ◽  
Paul W. Hazlett ◽  
John M. Gunn

Logging disturbances in boreal forest watersheds can alter biogeochemical processes in soils by changing forest composition, plant uptake rates, soil conditions, moisture and temperature regimes, soil microbial activity, and water fluxes. In general, these changes have often led to short-term increases in soil nutrient availability followed by increased mobility and losses by leaching to receiving waters. Among the studies we reviewed, dissolved organic carbon (DOC) exports usually increased after logging, and nitrogen (N) mineralization and nitrification often increased with resulting increased N availability and exports to receiving waters. Similar processes and responses occurred for phosphorus (P), but to a lesser extent than for N. In most cases, base cations were released and exported to receiving waters after logging. Several studies demonstrated that stem-only or partial-harvest logging reduced the impacts on nutrient release and exports in comparison to whole-tree clear-cutting. Despite these logging-induced increases in soil nutrient availability and movement to receiving waters, most studies reported little or no change in soil chemical properties. However, responses to logging were highly variable and often site specific. The likelihood, extent and magnitude of logging impacts on soil nutrient cycling and exports in boreal forest watersheds will be dependent on soil types, stand and site conditions, hydrological connectivity, post-logging weather patterns, and type and timing of harvest activities. Additionally, logging impacts can interact with, and be confounded by, atmospheric pollutant deposition and climate change. Further watershed-level empirical studies and modeling efforts are required to elucidate these interactions, to improve predictive capabilities, and to advance forest management guidelines for sustaining forest soil productivity and limiting nutrient exports.


Sign in / Sign up

Export Citation Format

Share Document