scholarly journals Is Plant Life-History of Biseasonal Germination Consistent in Response to Extreme Precipitation?

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1642
Author(s):  
Yanfeng Chen ◽  
Hui Zhang ◽  
Lingwei Zhang ◽  
Lan Zhang ◽  
Qiumei Cao ◽  
...  

Future climate is projected to increase in the intensity and frequency of extreme precipitation events, and the resulting ecological consequences are often more serious than those of normal precipitation events. In particular, in desert ecosystems, due to the low frequency and strong fluctuation of extreme precipitation, the destructive consequences for desert plants caused by extreme precipitation have not received enough attention for some time. Based on statistics of extreme precipitation events (1965–2018) in the Gurbantunggut Desert, we investigated the effects of extreme precipitation (+0%, CK; +50%, W1; +100%, W2; +200%, W3; maintenance of field capacity, W4) on the plant life-history of the spring-germinated (SG) and autumn-germinated (AG) ephemeral plant Erodium oxyrhynchum by monitoring seedling emergence, survival, phenology, organ size, biomass accumulation, and allocation. The results showed that extreme precipitation caused about 2.5% seedling emergence of E. oxyrhynchum in autumn 2018 and 3.0% seedling emergence in early spring 2019, which means that most seeds may be stored in the soil or have died. Meanwhile, extreme precipitation significantly improved the survival, organ size, and biomass accumulation of SG and AG plants, and W3 was close to the precipitation threshold of SG (326.70 mm) and AG (560.10 mm) plants corresponding to the maximum individual biomass; thus, AG plants with a longer life cycle need more water for growth. Conversely, W4 caused AG plants to enter the leaf stage in advance and led to death in winter, which indicates that extreme precipitation may not be good for AG plants. Root and reproduction biomass allocation of SG and AG plants showed a significantly opposite trend under extreme precipitation treatments, which might be related to their different life-history strategies. Therefore, when only taking into account the changing trend of extreme precipitation from the Coupled Model Intercomparison Project 6 (CMIP6) climate projections data, we speculate that extreme precipitation may promote the growth of SG and AG plants from the beginning to the middle of this century, but extreme precipitation in autumn exceeding a certain threshold may adversely affect the survival of AG plants at the end of the century.

Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 218
Author(s):  
Changjun Wan ◽  
Changxiu Cheng ◽  
Sijing Ye ◽  
Shi Shen ◽  
Ting Zhang

Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change would have a serious impact on the social economy, ecological development and life safety. In recent decades, many studies about extreme precipitation have been performed on spatio-temporal variation patterns under global changes; little research has been conducted on the regionality and persistence, which tend to be more destructive. This study defines extreme precipitation events by percentile method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation, taking China in July as a case. The study result showed that the STSM with the LSAM can effectively detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July 2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective, China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in Xinjiang, where extreme precipitation events often take place earlier and persist longer.


Author(s):  
Maurizio Iannuccilli ◽  
Giorgio Bartolini ◽  
Giulio Betti ◽  
Alfonso Crisci ◽  
Daniele Grifoni ◽  
...  

2012 ◽  
Vol 13 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Pavel Ya. Groisman ◽  
Richard W. Knight ◽  
Thomas R. Karl

Abstract In examining intense precipitation over the central United States, the authors consider only days with precipitation when the daily total is above 12.7 mm and focus only on these days and multiday events constructed from such consecutive precipitation days. Analyses show that over the central United States, a statistically significant redistribution in the spectra of intense precipitation days/events during the past decades has occurred. Moderately heavy precipitation events (within a 12.7–25.4 mm day−1 range) became less frequent compared to days and events with precipitation totals above 25.4 mm. During the past 31 yr (compared to the 1948–78 period), significant increases occurred in the frequency of “very heavy” (the daily rain events above 76.2 mm) and extreme precipitation events (defined as daily and multiday rain events with totals above 154.9 mm or 6 in.), with up to 40% increases in the frequency of days and multiday extreme rain events. Tropical cyclones associated with extreme precipitation do not significantly contribute to the changes reported in this study. With time, the internal precipitation structure (e.g., mean and maximum hourly precipitation rates within each preselected range of daily or multiday event totals) did not noticeably change. Several possible causes of observed changes in intense precipitation over the central United States are discussed and/or tested.


Sign in / Sign up

Export Citation Format

Share Document