scholarly journals The Involvement of Glucose in Hydrogen Gas-Medicated Adventitious Rooting in Cucumber

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1937
Author(s):  
Zongxi Zhao ◽  
Changxia Li ◽  
Huwei Liu ◽  
Jingjing Yang ◽  
Panpan Huang ◽  
...  

Hydrogen gas (H2) and glucose (Glc) have been reported as novel antioxidants and signal molecules involved in multiple biological processes in plants. However, the physiological roles and relationships of H2 and Glc in adventitious rooting are less clear. Here, we showed that the effects of different concentrations Glc (0, 0.01, 0.05, 0.10, 0.50 and 1.00 mM) on adventitious rooting in cucumber were dose-dependent, with a maximal biological response at 0.10 mM. While, the positive roles of hydrogen rich water (HRW, a H2 donor)-regulated adventitious rooting were blocked by a specific Glc inhibitor glucosamine (GlcN), suggesting that Glc might be responsible for H2-regulated adventitious root development. HRW increased glucose, sucrose, starch and total sugar contents. Glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and glucose-1-phosphate (G1P) contents were also increased by HRW. Meanwhile, the activities of sucrose-related enzymes incorporating sucrose synthase (SS) and sucrose phosphate synthase (SPS) and glucose-related enzymes including hexokinase (HK), pyruvate kinase (PK) and adenosine 5′-diphosphate pyrophosphorylase (AGPase) were increased by HRW. Moreover, HRW upregulated the expression levels of sucrose or glucose metabolism-related genes including CsSuSy1, CsSuSy6, CsHK1, CsHK3, CsUDP1, CsUDP1-like, CsG6P1 and CsG6P1-like. However, these positive roles were all inhibited by GlcN. Together, H2 might regulate adventitious rooting by promoting glucose metabolism.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 420 ◽  
Author(s):  
Yuzheng Deng ◽  
Chunlei Wang ◽  
Ni Wang ◽  
Lijuan Wei ◽  
Weifang Li ◽  
...  

Adventitious root (AR) is a kind of later root, which derives from stems and leaf petioles of plants. Many different kinds of small signaling molecules can transmit information between cells of multicellular organisms. It has been found that small molecules can be involved in many growth and development processes of plants, including stomatal movement, flowering, fruit ripening and developing, and AR formation. Therefore, this review focuses on discussing the functions and mechanisms of small signaling molecules in the adventitious rooting process. These compounds, such as nitric oxide (NO), hydrogen gas (H2), hydrogen sulfide (H2S), carbon monoxide (CO), methane (CH4), ethylene (ETH), and hydrogen peroxide (H2O2), can be involved in the induction of AR formation or development. This review also sums the crosstalk between these compounds. Besides, those signaling molecules can regulate the expressions of some genes during AR development, including cell division genes, auxin-related genes, and adventitious rooting-related genes. We conclude that these small-molecule compounds enhance adventitious rooting by regulating antioxidant, water balance, and photosynthetic systems as well as affecting transportation and distribution of auxin, and these compounds further conduct positive effects on horticultural plants under environmental stresses. Hence, the effect of these molecules in plant AR formation and development is definitely a hot issue to explore in the horticultural study now and in the future.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1784
Author(s):  
Matthias Schilde ◽  
Dirk von Soosten ◽  
Liane Hüther ◽  
Susanne Kersten ◽  
Ulrich Meyer ◽  
...  

Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose–response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.


1984 ◽  
Vol 34 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Thomas W. Rufty ◽  
Steven C. Huber ◽  
Phillip S. Kerr

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186650 ◽  
Author(s):  
Juan Wang ◽  
Junjie Du ◽  
Xiaopeng Mu ◽  
Pengfei Wang

The use of elasticity coefficients and flux-control coefficients in a quantitative treatment of control is discussed, with photosynthetic sucrose synthesis as an example. Experimental values for elasticities for the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase are derived from their in vitro properties, and from an analysis of the in vivo relation between fluxes and metabolite levels. An empirical factor α , describing the response of the fructose 2,6-bisphosphate regulator cycle to fructose 6-phosphate is described, and an expression is derived relating α to the elasticities of the enzymes involved in this regulator cycle. The in vivo values for elasticities and α are then used in a modified form of the connectivity theorem to estimate the flux control coefficients of the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase during rapid photosynthetic sucrose synthesis.


1992 ◽  
Vol 283 (3) ◽  
pp. 877-882 ◽  
Author(s):  
J L A Huber ◽  
S C Huber

We recently reported [Huber, Huber & Nielsen (1989) Arch. Biochem. Biophys. 270, 681-690] that spinach (Spinacia oleracea L.) sucrose-phosphate synthase (SPS; EC 2.4.1.14) was phosphorylated in vivo when leaves were fed [32P]Pi. In vitro the enzyme was phosphorylated and inactivated by using [gamma-32P]ATP. We now report that SPS is phosphorylated both in vivo and in vitro on serine residues. The protein is phosphorylated at multiple sites both in vivo and in vitro as indicated by two-dimensional peptide maps of the immunopurified SPS protein. After being fed with radiolabel, leaves were illuminated or given mannose (which activates the enzyme), in the presence or absence of okadaic acid. Feeding okadaic acid to leaves decreased the SPS activation state in the dark and light and in leaves fed mannose. Across all the treatments, the activation state of SPS in situ was inversely related to the labelling of two phosphopeptides (designated phosphopeptides 5 and 7). These two phosphopeptides are phosphorylated when SPS is inactivated in vitro with [gamma-32P]ATP, and thus are designated as regulatory (inhibitory) sites [Huber & Huber (1991) Biochim. Biophys. Acta 1091, 393-400]. Okadaic acid increased the total 32P-labelling of SPS and in particular increased labelling of the two regulatory sites, which explains the decline in activation state. In the presence of okadaic acid, two cryptic phosphorylation sites became labelled in vivo that were not apparent in the absence of the inhibitor. Overall, the results suggest that light/dark regulation of SPS activity occurs as a result of regulatory serine phosphorylation. Multiple sites are phosphorylated in vivo, but two sites in particular appear to regulate activity and dephosphorylation of these sites in vivo is sensitive to okadaic acid.


Sign in / Sign up

Export Citation Format

Share Document