scholarly journals Cannabis sativa: From Therapeutic Uses to Micropropagation and Beyond

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2078
Author(s):  
Tristan K. Adams ◽  
Nqobile A. Masondo ◽  
Pholoso Malatsi ◽  
Nokwanda P. Makunga

The development of a protocol for the large-scale production of Cannabis and its variants with little to no somaclonal variation or disease for pharmaceutical and for other industrial use has been an emerging area of research. A limited number of protocols have been developed around the world, obtained through a detailed literature search using web-based database searches, e.g., Scopus, Web of Science (WoS) and Google Scholar. This article reviews the advances made in relation to Cannabis tissue culture and micropropagation, such as explant choice and decontamination of explants, direct and indirect organogenesis, rooting, acclimatisation and a few aspects of genetic engineering. Since Cannabis micropropagation systems are fairly new fields, combinations of plant growth regulator experiments are needed to gain insight into the development of direct and indirect organogenesis protocols that are able to undergo the acclimation stage and maintain healthy plants desirable to the Cannabis industry. A post-culture analysis of Cannabis phytochemistry after the acclimatisation stage is lacking in a majority of the reviewed studies, and for in vitro propagation protocols to be accepted by the pharmaceutical industries, phytochemical and possibly pharmacological research need to be undertaken in order to ascertain the integrity of the generated plant material. It is rather difficult to obtain industrially acceptable micropropagation regimes as recalcitrance to the regeneration of in vitro cultured plants remains a major concern and this impedes progress in the application of genetic modification technologies and gene editing tools to be used routinely for the improvement of Cannabis genotypes that are used in various industries globally. In the future, with more reliable plant tissue culture-based propagation that generates true-to-type plants that have known genetic and metabolomic integrity, the use of genetic engineering systems including “omics” technologies such as next-generation sequencing and fast-evolving gene editing tools could be implemented to speed up the identification of novel genes and mechanisms involved in the biosynthesis of Cannabis phytochemicals for large-scale production.

2016 ◽  
Vol 63 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Ayesh Gaur ◽  
Pankaj Kumar ◽  
Ajay Kumar Thakur ◽  
Dinesh Kumar Srivastava

Genus Populus comprises about 25–35 species of deciduous flowering plants in the family Salicaceae which are widely distributed in temperate climates of the Northern Hemisphere. Populus species are important resources in certain branches of industry and have a special role for the scientific study of biological and agricultural systems. The poplar is known for its remarkable significance among the commercially propagated tree species such as teak, eucalyptus, wild cherry, red wood, and radiata pine. In vitro regeneration refers to growing and multiplications of cells, tissues and organs on defined liquid/solid media under aseptic and controlled environments. In vitro clonal propagation of forest trees, due to the high multiplication rate, is an attractive alternative for rapid propagation of elite genotypes of those species that could not easily be propagated through conventional methods. Owing to their widespread uses at the industrial level and for meeting the ever-increasing global demand for biomass production and wood industry, tissue culture techniques can be exploited for rapid cloning and large-scale production of planting material of various poplar species. Recent progress in the field of plant tissue culture determined this area to be one of the most dynamic and promising for experimental biology. Much work has been carried out on in vitro plant regeneration studies in Populus spp. including direct organogenesis, indirect organogenesis and somatic embryogenesis. These reviews provide an insight for in vitro plant regeneration studies in poplar species and their potential in its improvement.


2014 ◽  
Vol 69 ◽  
pp. 21-27 ◽  
Author(s):  
Valeria Cavallaro ◽  
Cristina Patanè ◽  
Salvatore L. Cosentino ◽  
Isabella Di Silvestro ◽  
Venera Copani

1985 ◽  
Vol 5 (7) ◽  
pp. 1795-1799
Author(s):  
D R Kaplan ◽  
B Bockus ◽  
T M Roberts ◽  
J Bolen ◽  
M Israel ◽  
...  

A recombinant plasmid containing a metallothionein promoter-polyoma middle T cDNA fusion was constructed and used to transfect NIH 3T3 cells. Transformed cells expressing middle T were injected into nude mice. Within 3 weeks, each mouse produced tumors containing middle T equivalent to that in 250 to 1,000 100-mm dishes of polyomavirus-infected cells. This middle T, partially purified by immunoaffinity chromatography, retained activity as measured by its ability to be phosphorylated in vitro. The combined approach of fusing strong promoters to genes of interest and utilizing nude mice to grow large quantities of cells expressing the gene provides a quick, inexpensive alternative to other expression systems.


2017 ◽  
Vol 9 (3) ◽  
pp. 371-377
Author(s):  
Charles Oluwaseun ADETUNJI ◽  
Julius Kola OLOKE ◽  
Gandham PRASAD ◽  
Moses ABALAKA ◽  
Emenike Onyebum IROKANULO

Formulation of effective and environmental friendly bioherbicides depends on the type of fermentation medium used for the production of phytotoxic metabolites. The effect of biomass, colony forming unit and the phytotoxic metabolite produced from the biphasic fermentation was carried out, while the phytotoxic metabolite was  tested in vivo and in-vitro on Echinochola crus-galli and dicotyledonous Chromolaena odorata. The mutant strain of Lasiodiplodia pseudotheobromae C1136 (Lp90) produced the highest amount of conidia and the largest necrotic area on the two tested weeds when compared to its wild strain in the different biphasic media combinations. The study revealed that the biphasic system containing PDB + rice produced the highest bioherbicidal activities. Therefore, the phytotoxic metabolites from strain C1136 are suggested for large scale production of bioherbicides for the management of weeds in conventional farming to improve yield and enhance food security.


1985 ◽  
Vol 5 (7) ◽  
pp. 1795-1799 ◽  
Author(s):  
D R Kaplan ◽  
B Bockus ◽  
T M Roberts ◽  
J Bolen ◽  
M Israel ◽  
...  

A recombinant plasmid containing a metallothionein promoter-polyoma middle T cDNA fusion was constructed and used to transfect NIH 3T3 cells. Transformed cells expressing middle T were injected into nude mice. Within 3 weeks, each mouse produced tumors containing middle T equivalent to that in 250 to 1,000 100-mm dishes of polyomavirus-infected cells. This middle T, partially purified by immunoaffinity chromatography, retained activity as measured by its ability to be phosphorylated in vitro. The combined approach of fusing strong promoters to genes of interest and utilizing nude mice to grow large quantities of cells expressing the gene provides a quick, inexpensive alternative to other expression systems.


Author(s):  
Allan John ◽  
Bill Mason

SynopsisA combination of two vegetative techniques is seen as a possibility for large-scale production of juvenile, rooted Sitka spruce cuttings of improved genotype. Tissue culture techniques, under development, would be used to produce large numbers of stock plants for stem cuttings production. Cuttings techniques, currently under commercial trial, would be used to produce the rooted plants for forest establishment.


2021 ◽  
Author(s):  
Teresa P. Silva ◽  
Rui Sousa-Luís ◽  
Tiago G. Fernandes ◽  
Evguenia P. Bekman ◽  
Carlos A. V. Rodrigues ◽  
...  

AbstractHuman induced pluripotent stem cells (iPSCs) have great potential for disease modeling. However, generating iPSC-derived models to study brain diseases remains a challenge. In particular, the ability to recapitulate cerebellar development in vitro is still limited. We presented a reproducible and scalable production of cerebellar organoids by using the novel Vertical-Wheel single-use bioreactors, in which functional cerebellar neurons were obtained. Here, we evaluate the global gene expression profiles by RNA sequencing (RNA-seq) across cerebellar differentiation, demonstrating a faster cerebellar commitment in this novel dynamic differentiation protocol. Furthermore, transcriptomic profiles suggest a significant enrichment of extracellular matrix (ECM) in dynamic-derived cerebellar organoids, which can better mimic the neural microenvironment and support a consistent neuronal network. Thus, an efficient generation of organoids with cerebellar identity was achieved for the first time in a continuous process using a dynamic system without the need of organoids encapsulation in ECM-based hydrogels, allowing the possibility of large-scale production and application in high-throughput processes. The presence of factors that favors angiogenesis onset was also detected in dynamic condition, which can enhance functional maturation of cerebellar organoids. We anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests and studying pathological pathways involved in cerebellar degeneration.


Sign in / Sign up

Export Citation Format

Share Document