scholarly journals Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2342
Author(s):  
Hamada F. A. Ahmed ◽  
Mahmoud F. Seleiman ◽  
Adel M. Al-Saif ◽  
Maha A. Alshiekheid ◽  
Martin L. Battaglia ◽  
...  

The present study aimed to investigate the potentiality of certain biocontrol agents, namely Bacillus subtilis, B. pumilus, B. megaterium, Pseudomonas fluorescens, Serratia marcescens, Trichoderma album, T. harzianum and T. viride, as well as the synthetic fungicide difenoconazole to control celery powdery mildew caused by Erysiphe heraclei DC, in vitro (against conidia germination and germ tube length of E. heraclei) and in vivo (against disease severity and AUDPC). In vitro, it was found that the antifungal activity of the tested biocontrol agents significantly reduced the germination percentage of the conidia and germ tube length of the pathogen. The reduction in conidia germination ranged between 88.2% and 59.6% as a result of the treatment with B. subtilis and T. album, respectively compared with 97.1% by the synthetic fungicide difenoconazole. Moreover, the fungicide achieved the highest reduction in germ tube length (92.5%) followed by B. megaterium (82.0%), while T. album was the least effective (62.8%). Spraying celery plants with the tested biocontrol agents in the greenhouse significantly reduced powdery mildew severity, as well as the area under the disease progress curve (AUDPC), after 7, 14, 21 and 28 days of application. In this regard, B. subtilis was the most efficient followed by B. pumilus, S. marcescens and B. megaterium, with 80.1, 74.4, 73.2 and 70.5% reductions in disease severity, respectively. In AUDPC, reductions of those microorganisms were 285.3, 380.9, 396.7 and 431.8, respectively, compared to 1539.1 in the control treatment. On the other hand, the fungicide difenoconazole achieved maximum efficacy in reducing disease severity (84.7%) and lowest AUDPC (219.3) compared to the other treatments. In the field, all the applied biocontrol agents showed high efficiency in suppressing powdery mildew on celery plants, with a significant improvement in growth and yield characteristics. In addition, they caused an increase in the concentration of leaf pigments, and the activities of defense-related enzymes such as peroxidase (PO) and polyphenol oxidase (PPO) and total phenol content (TPC). In conclusion, the results showed the possibility of using tested biocontrol agents as eco-friendly alternatives to protect celery plants against powdery mildew.

2006 ◽  
Vol 96 (11) ◽  
pp. 1179-1187 ◽  
Author(s):  
Mahfuzur Rahman ◽  
Zamir K. Punja

Cylindrocarpon root rot, caused by Cylindrocarpon destructans, is an important disease on ginseng (Panax quinquefolius) in Canada. We studied the effects of iron (Fe) on disease severity and pathogen growth. When Hoagland's solution was amended with Fe at 56 and 112 μg/ml compared with 0 μg/ml, disease initiation and final severity on hydroponically maintained ginseng roots was significantly (P<0.0001) enhanced. Under field conditions, wounding of roots with a fine needle followed by application of 0.05% FeNaEDTA to the rhizosphere of treated plants significantly enhanced Cylindrocarpon root rot in 2003 and 2004 compared with unwounded roots with Fe or wounded roots without Fe. Foliar applications of Fe (as FeNaEDTA) to ginseng plants three times during the 2002 and 2003 growing seasons significantly increased Fe levels in root tissues. These roots developed larger lesions following inoculation with C. destructans in vitro. When radioactive Fe (59Fe) was applied to the foliage of ginseng plants, it was detected in the secondary phloem and in cortical and epidermal tissues within 1 week. Artificially wounded areas on the roots accumulated more 59Fe than healthy areas. Diseased tissue also had threefold higher levels of phenolic compounds and Fe compared with adjoining healthy tissues. High-performance liquid chromatography analysis revealed enhanced levels of protocatechuic acid, chlorogenic acid, caffeic acid, ferulic acid, cinnamic acid, phloridizin, and quercetin. Phenolic compounds produced in diseased and wounded tissues sequestered Fe in vitro. The effects of Fe on mycelial growth, conidial germ tube length, and secondary branching of germ tubes of C. destructans were examined in vitro. When grown on Chrome-azurol S medium, Fe also was sequestered by C. destructans through siderophore production, which was visualized as a clearing pigmented zone at the margin of colonies. Mycelial dry weight was significantly increased in glucose/ yeast broth containing Fe at 56 or 112 μg/ml. Conidial germ tube length and secondary branching of hyphae also were enhanced after 8 and 16 h by Fe. Colony growth of C. destructans was not enhanced by Fe, but significantly greater spore production was observed with Fe at 56 and 112 μg/ml compared with no Fe in the medium. Although these levels of Fe had no effect on fungal pectinase enzyme activity, polyphenoloxidase (PPO) activity was significantly (P <0.0001) enhanced. We conclude that Fe enhances Cylindrocarpon root rot through enhanced pathogen growth, sporulation, and PPO enzyme activity. Fe sequestered by phenolic compounds produced in wounded tissues can enhance Fe levels at the site of infection. The pathogen also has the ability to sequester Fe at these sites.


2015 ◽  
Vol 41 (2) ◽  
pp. 101-106
Author(s):  
Marta Maria Casa Blum ◽  
Erlei Melo Reis ◽  
Francieli Tavares Vieira ◽  
Rita Carlini

In vitro experiments were conducted to assess the effects of substrate, temperature and time of exposure to temperature and photoperiod on P. pachyrhizi uredospore germination and germ tube growth. The following substrates were tested: water-agar and soybean leaf extract-agar at different leaf concentrations (0.5, 1.0, 2.0 and 4.0 g of leaves and 15g agar/L water), temperatures (10, 15, 20, 25, 30, and 35oC) and times of exposure (1, 2, 3, 4, 5, 6, 7, and 8 hours) to temperature and 12 different photoperiods. The highest germination and germ tube length was found for the soybean leaf extract agar. Maximum P. pachyrhizi uredospore germination was obtained at 21.8 and 22.3°C, and maximum germ tube growth at 21.4 and 22.1°C. The maximum uredospore germination was found at 6.4 hours exposure, while the maximum germ tube length was obtained at 7.7 h exposure. Regarding photoperiod, the maximum spore germination and the maximum uredospore germ tube length were found in the dark. Neither spore germination nor uredospore germ tube growth was completely inhibited by the exposure to continuous light.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 627f-627
Author(s):  
K.M.T. Cason ◽  
I.E. Yates

Pecan scab, caused by the fungus Cladosporium caryigenum (Ell. et Lant) Gottwald, produces more damage to pecan than all other diseases and insects combined. Early events during infection are critical to disease establishment and to expression of host resistance, but have not been examined previously. Objectives of this research were to determine if there is regulation of appressorial formation and if it is related to resistance. Pre-infectional host-pathogen interactions were studied in vivo (on leaves) and in vitro (on callus, dialysis membrane, and agar) with light and electron microscopy. Leaves, callus tissue, dialysis membranes, and agar were inoculated with scab conidia and were incubated under conditions optimum for germination. Conidia germinate and produce a germ tube on agar and dialysis membrane, but appressoria are not formed. Appressoria form on pecan callus, but germ tubes are long. Long germ tubes are often associated with resistant disease reactions. In vivo, appressoria form readily, but germ tube length varies depending on the location of the spore on the leaf surface. Preliminary evidence indicates that surface topography affects induction of appressorium formation in the scab fungus.


1992 ◽  
Vol 43 (3) ◽  
pp. 451 ◽  
Author(s):  
PJ Ellison ◽  
BR Cullis ◽  
PF Kable

The effect of light on in vitro germination of urediniospores of Tranzschelia discolor was studied over time at different intensitities (up to 400 8E m-2 s-l) within the temperature range 5�C to 20�C. A model was also developed from the data to predict germination at different combinations of light, temperature and times of leaf wetness. Light retarded the germination process, and its effect increased in direct proportion to intensity. At 20�C, for example, the time taken to exceed 80% germination increased from 2 h in the dark to 9 h at 200 8E m-2 s-l. The model showed that there was an interaction between light and temperature, with the effect of light becoming more pronounced as the temperature declined below 20�C. Germination percentages of the order of 90% were, however, recorded within 24 h at all combinations of light intensity and temperature studied. Light also influenced germ tube growth, causing a reduction in the rate of growth. As in germination, its effect increased with increasing light intensity. At 20�C, the average germ tube length at 9 h was 541 8m in the dark, compared with 227 8m at 200 8E m-2 s-1 and 148 8m at 400 8E m-2 s-l. A similar effect was observed at 5�C, where the average germ tube length at 24 h was 274 8m in the dark compared with 157 8m at 200 8E m-2 s-l. The effects of light on the germination and germ tube growth of urediniospores under field conditions are discussed.


1961 ◽  
Vol 14 (1) ◽  
pp. 58 ◽  
Author(s):  
IAM Cruickshank

In an investigation into the effect of temperature on the germination and germ-tube length of Peronospora tabacina Adam using an in vitro technique the following results were obtained:


1982 ◽  
Vol 28 (2) ◽  
pp. 205-210 ◽  
Author(s):  
J. B. Jones ◽  
C. W. Roane

Xanthomonas campestris pv. undulosa did not inhibit growth or spore germination of Septoria nodorum on wheat leaf extract agar, whereas Pseudomonas cepacia produced a zone of complete inhibition of spore germination up to 17.5 mm and reduced germination up to 5 cm from the bacterial front. Culture filtrates of the two bacteria grown in 'Blueboy' or 'Arthur' wheat leaf extract broth were incorporated into fresh wheat leaf extract broth. These filtrates caused a reduction in growth (dry weight) of S. nodorum compared with growth in unamended extract. Fungal mass was considerably lower in P. cepacia filtrate of 'Arthur' wheat than in the X. campestris pv. undulosa filtrate or the control. The extent of reduction by P. cepacia filtrate suggests an antibiotic effect. In phosphate buffer, X. campestris pv. undulosa reduced spore germination and germ tube length of S. nodorum, while P. cepacia inhibited germination and germ tube growth completely. In vivo, X. campestris pv. undulosa had no effect on spore germination but did reduce germ tube length whereas P. cepacia inhibited both parameters.


2013 ◽  
Vol 65 (3) ◽  
pp. 1069-1077 ◽  
Author(s):  
P. Pap ◽  
B. Rankovic ◽  
S. Masirevic

The influence of temperature, humidity and light on the conidial germination and germ tube elongation of oak powdery mildew (Microsphaera alphitoides Griff. et Maubl.) was studied in controlled conditions. The maximal germ tube length was attained at 25?C, whereas at lower and higher than optimal temperatures, germ tube growth was significantly lower. Germ tubes begin to develop at all values of relative humidity (10-100%), reaching the maximum length at 90%. The development of germ tubes was the most intense in full light and the lowest in total darkness. The artificial infection of floating leaves showed that an increasing age had an inhibitory effect on the mycelium development and spore formation. Since conidia play a crucial role in powdery mildew epidemiology, it is of particular importance to elucidate the influence of environmental factors in the complex relations that exist between the plant and its pathogen.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Nadia Lyousfi ◽  
Rachid Lahlali ◽  
Chaimaa Letrib ◽  
Zineb Belabess ◽  
Rachida Ouaabou ◽  
...  

The main objective of this study was to evaluate the ability of both antagonistic bacteria Bacillus amyloliquefaciens (SF14) and Alcaligenes faecalis (ACBC1) used in combination with salicylic acid (SA) to effectively control brown rot disease caused by Monilinia fructigena. Four concentrations of salicylic acid (0.5%, 2%, 3.5%, and 5%) were tested under in vitro and in vivo conditions. Furthermore, the impact of biological treatments on nectarine fruit parameters’ quality, in particular, weight loss, titratable acidity, and soluble solids content, was evaluated. Regardless of the bacterium, the results indicated that all combined treatments displayed a strong inhibitory effect on the mycelial growth of M. fructigena and disease severity. Interestingly, all SA concentrations significantly improved the biocontrol activity of each antagonist. The mycelial growth inhibition rate ranged from 9.79% to 88.02% with the highest reduction rate recorded for bacterial antagonists in combination with SA at both concentrations of 0.5% and 3.5%. The in vivo results confirmed the in vitro results with a disease severity varying from 0.00% to 51.91%. A significant biocontrol improvement was obtained with both antagonistic bacteria when used in combination with SA at concentrations of 0.5% and 2%. The lowest disease severity observed with ACBC1 compared with SF14 is likely due to a rapid adaptation and increase of antagonistic bacteria population in wounded sites. The impact of all biological treatments revealed moderate significant changes in the fruit quality parameters with weight loss for several treatments. These results suggest that the improved disease control of both antagonistic bacteria was more likely directly linked to both the inhibitory effects of SA on pathogen growth and induced fruit resistance.


Sign in / Sign up

Export Citation Format

Share Document